Skip to main content
Log in

Enantioselective Separation of Basic Drugs by CE with Polygalacturonic Acid as a Novel Chiral Selector

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Polygalacturonic acid, a linear high molecular weight homopolysaccharide was investigated as a chiral selector in capillary zone electrophoresis for the separation of enantiomers of basic drugs. The choices of running buffer pH and concentration of chiral selector were found to be important for the improvement of enantioselectivity. The effects of background electrolyte concentration and the capillary temperature on the separation were also examined. Enantioseparations were carried out in the acidic conditions using 1.5% polygalacturonic acid (w/v) in a 40 mM phosphate buffer under an applied voltage of 15 kV. The optimization of these separations was dependent on the nature of the analytes and could be achieved by the proper choice of experimental conditions. A brief mechanism of enantiorecognition by polygalacturonic acid was also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Terabe S, Otsuka K, Nishi H (1994) J Chromatogr A 666:295–319. doi:10.1016/0021-9673(94)80392-7

    Article  CAS  Google Scholar 

  2. Taga A, Du Y, Suzuki S, Honda S (2003) J Pharm Biomed Anal 30:1587–1593. doi:10.1016/S0731-7085(02)00478-8

    Article  CAS  Google Scholar 

  3. Gubitz G, Schmid MG (1997) J Chromatogr A 792:179–225. doi:10.1016/S0021-9673(97)00871-6

    Article  CAS  Google Scholar 

  4. Verleysen K, Sandra P (1998) Electrophoresis 19:2798–2833. doi:10.1002/elps.1150191607

    Article  CAS  Google Scholar 

  5. Nishi H (1997) J Chromatogr A 792:327–347. doi:10.1016/S0021-9673(97)00794-2

    Article  CAS  Google Scholar 

  6. Sutton RMC, Sutton KC, Stalcup AM (1997) Electrophoresis 18:2297–2304. doi:10.1002/elps.1150181220

    Article  CAS  Google Scholar 

  7. Hage DS (1997) Electrophoresis 18:2311–2321. doi:10.1002/elps.1150181222

    Article  CAS  Google Scholar 

  8. Amstrong DW, Nair UB (1997) Electrophoresis 18:2331–2342. doi:10.1002/elps.1150181224

    Article  Google Scholar 

  9. Camilleri P (1997) Electrophoresis 18:2322–2330. doi:10.1002/elps.1150181223

    Article  CAS  Google Scholar 

  10. Nishi H, Izumoto S, Nakamura K, Nakai H, Sato T (1996) Chromatographia 42:617–630. doi:10.1007/BF02267693

    Article  CAS  Google Scholar 

  11. Phinney KW, Sander LC (2003) Anal Bioanal Chem 375:763–768

    CAS  Google Scholar 

  12. D’Hulst A, Verbeke N (1992) J Chromatogr A 608:275–287. doi:10.1016/0021-9673(92)87134-T

    Article  Google Scholar 

  13. D’Hulst A, Verbeke N (1994) Electrophoresis 15:854–863. doi:10.1002/elps.11501501121

    Article  Google Scholar 

  14. Nishi H (1996) J Chromatogr A 735:345–351. doi:10.1016/0021-9673(95)01328-8

    Article  CAS  Google Scholar 

  15. Watanabe T, Takahashi K, Horiuchi M, Kato K, Nakazawa H, Sugimoto T (1999) J Pharm Biomed Anal 21:75–81. doi:10.1016/S0731-7085(99)00114-4

    Article  CAS  Google Scholar 

  16. Stalcup AM, Agyei NM (1994) Anal Chem 66:3054–3059. doi:10.1021/ac00091a011

    Article  CAS  Google Scholar 

  17. Jin Y, Stalcup AM (1998) Electrophoresis 19:2119–2123. doi:10.1002/elps.1150191213

    Article  CAS  Google Scholar 

  18. Nishi H, Nakamura K, Nakai H, Sato T (1995) Anal Chem 67:2334–2341. doi:10.1021/ac00110a003

    Article  CAS  Google Scholar 

  19. Gotti R, Cavrini V, Andrisano V, Mascellani G (1998) J Chromatogr A 814:205–211. doi:10.1016/S0021-9673(98)00434-8

    Article  CAS  Google Scholar 

  20. Gotti R, Furlanetto S, Andrisano V, Cavrini V, Pinzauti S (2000) J Chromatogr A 875:411–422. doi:10.1016/S0021-9673(99)01303-5

    Article  CAS  Google Scholar 

  21. Wang X, Lee J-T, Armstrong DW (1999) Electrophoresis 20:162–170. doi:10.1002/(SICI)1522-2683(19990101)20:1<162::AID-ELPS162>3.0.CO;2-6

    Article  CAS  Google Scholar 

  22. Du Y, Taga A, Suzuki S, Liu W, Honda S (2002) J Chromatogr A 962:221–231. doi:10.1016/S0021-9673(02)00593-9

    Article  CAS  Google Scholar 

  23. Du Y, Taga A, Suzuki S, Liu W, Honda S (2002) J Chromatogr A 947:287–299. doi:10.1016/S0021-9673(01)01608-9

    Article  CAS  Google Scholar 

  24. Beck G, Neau S (2000) Chirality 12:614–620. doi:10.1002/1520-636X(2000)12:8<614::AID-CHIR3>3.0.CO;2-D

    Article  CAS  Google Scholar 

  25. Budanova N, Shapovalova E, Lopatin S, Varlamov V, Shpigun O (2004) Chromatographia 59:709–713. doi:10.1365/s10337-004-0297-6

    Article  CAS  Google Scholar 

  26. Du Y, Honda S, Taga A, Liu W, Suzuki S (2002) Chin J Chem 20:1557–1565

    CAS  Google Scholar 

  27. Aspinall GO (ed) (1982) The polysaccharides. Academic Press, New York

    Google Scholar 

  28. Manunza B, Deiana S, Pintore M, Gessa C (1997) J Mol Struct (Theochem) 419:169–172. doi:10.1016/S0166-1280(97)00247-9

    Article  CAS  Google Scholar 

  29. White GW, Katona T, Zodda JP (1999) J Pharm Biomed Anal 20:905–912. doi:10.1016/S0731-7085(99)00083-7

    Article  CAS  Google Scholar 

  30. Unger EC (1994) US 5368840 941129, Application: US92-960591 921013

  31. Thakur BR, Singh RK, Handa AK (1997) Crit Rev Food Sci Nutr 37:47–73

    Article  CAS  Google Scholar 

  32. Takada N, Nelson PE (1983) J Food Sci 48:1408–1411. doi:10.1111/j.1365-2621.1983.tb03503.x

    Article  CAS  Google Scholar 

  33. Neubert R, Fritsch B, Dongowski G (1995) Pharmazie 50:414–416

    CAS  Google Scholar 

  34. Weinberger R (1993) Practical capillary electrophoresis. Academic Press, Boston, MA, p 1

    Google Scholar 

  35. Zhong HJ, Williams MAK, Goodall DM, Hansen ME (1998) Carbohydr Res 308:1–8. doi:10.1016/S0008-6215(97)10105-7

    Article  CAS  Google Scholar 

  36. Wren SAC, Rowe RC (1992) J Chromatogr A 603:235–241. doi:10.1016/0021-9673(92)85366-2

    Article  CAS  Google Scholar 

  37. Wren SAC, Rowe RC, Payne RS (1994) Electrophoresis 15:774–778. doi:10.1002/elps.11501501108

    Article  CAS  Google Scholar 

  38. Du Y, Chen J (2004) Chin J Anal Chem 32:1295–1298

    CAS  Google Scholar 

  39. Nishi H, Kuwahara Y (2001) J Biochem Biophys Methods 48:89–102. doi:10.1016/S0165-022X(01)00142-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work has been supported by Program for New Century Excellent Talents in University (No.: NCET-06-0498) and National Found for Fostering Talents of Basic Science (NFFTBS, No.:J0630858).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxiang Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, F., Du, Y., Chen, J. et al. Enantioselective Separation of Basic Drugs by CE with Polygalacturonic Acid as a Novel Chiral Selector. Chroma 69, 1315–1320 (2009). https://doi.org/10.1365/s10337-009-1043-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1043-x

Keywords

Navigation