Skip to main content
Log in

Preparative Electrochromatography of Tea Polyphenols and Caffeine

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A novel low-pressure preparative electrochromatography apparatus was set up to implement the separation of small polar compounds. In this apparatus, a distinguished bottom “T”-shape electrode chamber was designed to remove electrolysis gas and meanwhile enable the apparatus to separate small-molecule solutes. Partial separation of the model sample, crude tea extract (mainly containing (−)-epigallocatechin gallate, (−)-epicatechin gallate and caffeine) by hydrophobic macroporous adsorption column (maximum 40 cm × 20 mm ID) with electric field (maximum 111.0 V cm−1) proved the effectiveness of the electrochromatography apparatus. The fact that the total solute recoveries were over 90% showed the qualification of the apparatus for preparative purpose. The stronger the electric field, the more obvious the electrically induced effects. An alternative in-liquid load manner (loading sample in liquid after the electric field was applied) was proposed, which could further enhance the electrically induced effects than in-column load manner (loading sample on resin bed before applying electric field). Scale-up on electrochromatography by column diameter from 6 to 20 mm resulted in similar electrically induced effects on peak resolutions. All of these investigations revealed that the new technology was feasible and promising on separating small polar compounds, for it inherits the advantages of both liquid chromatography and electrophoresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ivory CF (1988) Sep Sci Technol 23:875–912. doi:10.1080/01496398808063143

    Article  CAS  Google Scholar 

  2. Rudge SR, Basak SK, Ladisch MR (1993) AIChE J 39:797–808. doi:10.1002/aic.690390508

    Article  CAS  Google Scholar 

  3. Basak SK, Velayudhan A, Kohimann K, Ladisch MR (1995) J Chromatogr A 707:69–76. doi:10.1016/0021-9673(94)01276-K

    Article  CAS  Google Scholar 

  4. Keim C, Ladisch M (2000) Biotechnol Bioeng 70:72–81. doi:10.1002/1097-0290(20001005)70:1<72::AID-BIT9>3.0.CO;2-F

    Article  CAS  Google Scholar 

  5. Cole KD, Cabezas H (1997) J Chromatogr A 760:259–263. doi:10.1016/S0021-9673(96)00774-1

    Article  CAS  Google Scholar 

  6. Tellez CM, Cole KD (2000) Electrophoresis 21:1001–1009. doi:10.1002/(SICI)1522-2683(20000301)21:5<1001::AID-ELPS1001>3.0.CO;2-3

    Article  CAS  Google Scholar 

  7. Cole KD (1997) Biotechnol Prog 13:289–295. doi:10.1021/bp970025a

    Article  CAS  Google Scholar 

  8. Cole KD, Tellez CM, Blakesley RW (2000) Electrophoresis 21:1010–1017. doi:10.1002/(SICI)1522-2683(20000301)21:5<1010::AID-ELPS1010>3.0.CO;2-7

    Article  CAS  Google Scholar 

  9. Park YG (2001) Biochem Eng J 7:213–221. doi:10.1016/S1369-703X(00)00125-X

    Article  CAS  Google Scholar 

  10. Strege MA (1998) Anal Chem 70:2439–2445. doi:10.1021/ac9802271

    Article  CAS  Google Scholar 

  11. Schlichtherle-Cerny H, Affolter M, Cerny C (2003) Anal Chem 75:2349–2354. doi:10.1021/ac026313p

    Article  CAS  Google Scholar 

  12. Zhang H, Guo Z, Zhang F, Xu Q, Liang X (2008) J Sep Sci 31:1623–1627. doi:10.1002/jssc200700656

    Article  CAS  Google Scholar 

  13. Peru KM, Kuchta SL, Headley JV, Cessna AJ (2006) J Chromatogr A 1107:152–158. doi:10.1016/j.chroma.2005.12.057

    Article  CAS  Google Scholar 

  14. Ali MS, Rafiuddin S, Ghori M, Khatri AR (2008) Chromatographia 67:517–527. doi:10.1365/s10337-008-0542-5

    Article  CAS  Google Scholar 

  15. Appelblad P, Jonsson T, Jiang W, Irgum K (2008) J Sep Sci 31:1529–1536. doi:10.1002/jssc.200800080

    Article  CAS  Google Scholar 

  16. Ikegami T, Tomomatsu K, Takubo H, Horie K, Tanaka N (2008) J Chromatogr A 1184:474–503. doi:10.1016/j.chroma.2008.01.075

    CAS  Google Scholar 

  17. Suo Y, Wang H, Li Y, You J, Wang H (2004) Chromatographia 60:589–595. doi:10.1365/s10337-004-0415-5

    Article  CAS  Google Scholar 

  18. Xiong B, Zhang L, Zhang Y, Zou H, Wang J (2000) J High Resolut Chromatogr 23:67–72

    Article  CAS  Google Scholar 

  19. Karenga S, Rassi ZE (2008) J Sep Sci 31:2677–2685. doi:10.1002/jssc.200800310

    Article  CAS  Google Scholar 

  20. Wang R, Zhou W, Jiang X (2008) J Agric Food Chem 56:2694–2701. doi:10.1021/jf0730338

    Article  CAS  Google Scholar 

  21. Zheng X, Chen A, Hoshi T, Anzai J, Li G (2006) Anal Bioanal Chem 386:1913–1919. doi:10.1007/s00216-006-0752-3

    Article  CAS  Google Scholar 

  22. Kumamoto M, Sonda T, Nagayama K, Tabat M (2001) Biosci Biotechnol Biochem 65:126–132. doi:10.1271/bbb.65.126

    Article  CAS  Google Scholar 

  23. Carregaro AB, Mataqueiro MI, Soares OAB, Queiroz-Neto A (2004) J Appl Toxicol 24:513–518. doi:10.1002/jat.1011

    Article  CAS  Google Scholar 

  24. Horie H, Mukai T, Kohata K (1997) J Chromatogr A 758:332–335. doi:10.1016/S0021-9673(96)00764-9

    Article  CAS  Google Scholar 

  25. Vallano PT, Remcho VT (2001) J Phys Chem B 105:3223–3228. doi:10.1021/jp003525m

    Article  CAS  Google Scholar 

  26. Rifai RA, Demesmay C, Crétier G, Rocca JL (2001) Chromatographia 53:691–696. doi:10.1007/BF02493022

    Article  CAS  Google Scholar 

  27. Kučerová Z, Szumski M, Buszewski B, Jandera P (2007) J Sep Sci 30:3018–3026. doi:10.1002/jssc.200700346

    Article  Google Scholar 

  28. Bellaistre MC, Randon J, Rocca J (2006) Electrophoresis 27:736–741. doi:10.1002/elps.200500341

    Article  Google Scholar 

  29. Nischang I, Tallarek U (2004) Electrophoresis 25:2935–2945. doi:10.1002/elps.200405990

    Article  CAS  Google Scholar 

  30. Rathore AS (2002) Electrophoresis 23:3827–3846. doi:10.1002/elps.200290004

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Our work was supported by Shanghai Leading Academic Discipline Project of China (B203) and Shanghai Nanometer Project of China (0259nm015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengsheng Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, L., Zhao, F. Preparative Electrochromatography of Tea Polyphenols and Caffeine. Chroma 69, 1325–1332 (2009). https://doi.org/10.1365/s10337-009-1021-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-009-1021-3

Keywords

Navigation