Skip to main content
Log in

A Step-Forward Method of Quantitative Analysis of Enzymatically Produced Isomaltooligosaccharide Preparations by AEC-PAD

  • Full Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

In this paper, anion exchange chromatography coupled with pulsed amperometric detection has been successfully applied for the fine analysis of isomaltooligosaccharides (IMO) syrups where previous reported methods suffered from a lack of homologue oligosaccharides resolution. These syrups are made of a very complex mixture of glucose oligosaccharides characterized at the same time by their DP value (from 2 to ~15) and linkage types [α-(1–2, 3 or 6) and non-IMO α-(1–4)] and position. A mix of available commercial standards (17 species) was completely separated on a CarboPac PA-100 column at a flow rate of 1 mL min−1 and with a gradient of sodium acetate in 100 mM sodium hydroxide. The method was validated according to calibration curve, precision, recovery tests, limits of detection and quantitation. Calibration curves presented correlation coefficients greater than 0.98. The analytical method has been applied on real syrups, keeping a high performance separation of structurally close molecules and giving, for six determinations, very low relative SD for the available standard molecules (0.3–5.8%). The accuracy of the proposed method was tested by recovery measurements: first by spiking maltose on three different syrups and then by spiking six different sugar standards (20, 50 and 75% of the initial content) on a single syrup. Good recovery results (respectively, 96.5–99.7 and 97.1–102.7%) were found. The method was found sensible with limits of detection (signal-to-noise ratio of 3) between 0.048 and 0.124 μg mL−1 and limits of quantification (signal-to-noise ratio of 10) between 0.159 and 0.412 μg mL−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gu Q, Yang Y, Jiang G, Chang G (2003) J Hyg Res 32:54–55

    Google Scholar 

  2. Kaneko T, Yokoyama A, Suzuki M (1995) Biosci Biotechnol Biochem 59:1190–1194

    Article  CAS  Google Scholar 

  3. Kohmoto T, Fukui F, Takaku H, Machida Y, Arai M, Mitsuoka T (1988) Bifidobacteria Microflora 7:61–69

    Google Scholar 

  4. Rycroft C, Jones M, Gibson G, Rastall R (2001) J Appl Microbiol 91:878–887. doi:10.1046/j.1365-2672.2001.01446.x

    Article  CAS  Google Scholar 

  5. Sanz M, Gibson G, Rastall R (2005) J Agric Food Chem 53:5192–5199. doi:10.1021/jf050276w

    Article  CAS  Google Scholar 

  6. Delzenne N, Williams C (2002) Curr Opin Lipidol 13:61–67. doi:10.1097/00041433-200202000-00009

    Article  CAS  Google Scholar 

  7. Nakakuki T (2005) J Appl Glycosci 52:267–271

    CAS  Google Scholar 

  8. Pazur J, French D (1952) J Biol Chem 196(1):265–272

    CAS  Google Scholar 

  9. Wang X, Rakshit S (2000) Process Biochem 35:771–775. doi:10.1016/S0032-9592(99)00139-9

    Article  CAS  Google Scholar 

  10. Kato N, Suyama S, Shirokane M, Kato M, Kobayashi T, Tsukagoshi N (2002) Appl Environ Microbiol 68:1250–1256. doi:10.1128/AEM.68.3.1250-1256.2002

    Article  CAS  Google Scholar 

  11. Yun J, Lee M, Song S (1994) Biotechnol Lett 16:1145–1150. doi:10.1007/BF01020841

    Article  CAS  Google Scholar 

  12. Kuriki T, Yanase M, Takata H, Takesada Y, Imanaka T, Okada S (1993) Appl Environ Microbiol 59:953–959

    CAS  Google Scholar 

  13. McCleary B, Gibson T (1989) Carbohydr Res 185:147–162. doi:10.1016/0008-6215(89)84030-3

    Article  CAS  Google Scholar 

  14. Chen W, Hung T, Lee S (1997) Biotechnol Lett 19:949–951. doi:10.1023/A:1018374612403

    Article  CAS  Google Scholar 

  15. Cai Y, Liu J, Shi Y, Liang L, Mou S (2005) J Chromatogr A 1085:98–103. doi:10.1016/j.chroma.2004.11.100

    Article  CAS  Google Scholar 

  16. Guddat S, Thevis M, Schänzer W (2005) Biomed Chromatogr 19:743–750. doi:10.1002/bmc.509

    Article  CAS  Google Scholar 

  17. Hayakawa K, Ando K, Yoshida N, Yamamoto A, Matsunaga A, Nishimura M et al (2000) Biomed Chromatogr 14(2):72–76. doi:10.1002/(SICI)1099-0801(200004)14:2<72::AID-BMC927>3.0.CO;2-S

    Article  CAS  Google Scholar 

  18. Mirmira S, Schreiber M, Guessford S (1993) J Liquid Chromatogr Relat Technol 16(12):2631–2638. doi:10.1080/10826079308019598

    Article  CAS  Google Scholar 

  19. Perlné M, Horváth K, Katona Z (2000) Acta Pharm Hung 70(3–6):231–238

    Google Scholar 

  20. Vitek V, Vitek K (1973) Biochem Med 7:119–127. doi:10.1016/0006-2944(73)90107-5

    Article  CAS  Google Scholar 

  21. Wolfrom M, Schwab G (1969) Carbohydr Res 9:407–413. doi:10.1016/S0008-6215(00)80025-7

    Article  CAS  Google Scholar 

  22. Koizumi K (1996) J Chromatogr A 720:119–126. doi:10.1016/0021-9673(94)01274-1

    Article  CAS  Google Scholar 

  23. Robyt J, Mukerjea R (1994) Carbohydr Res 251:187–202. doi:10.1016/0008-6215(94)84285-X

    Article  CAS  Google Scholar 

  24. Schmidt F, Enevoldse B (1978) Carbohydr Res 61:197–209. doi:10.1016/S0008-6215(00)84480-8

    Article  CAS  Google Scholar 

  25. Goulas A, Fisher D, Grimble G, Grandison A, Rastall R (2004) Enzyme Microb Technol 35:327–338. doi:10.1016/j.enzmictec.2004.05.008

    Article  CAS  Google Scholar 

  26. Kubik C, Sikora B, Bielecki S (2004) Enzyme Microb Technol 34:555–560. doi:10.1016/j.enzmictec.2003.11.022

    Article  CAS  Google Scholar 

  27. Kuriki T, Yanase M, Takata H, Imanaka T, Okadawa S (1993) J Ferment Bioeng 76(3):184–190. doi:10.1016/0922-338X(93)90005-S

    Article  CAS  Google Scholar 

  28. Oguma T, Tobe K, Kobayashi M (1994) FEBS Lett 345:135–138. doi:10.1016/0014-5793(94)00418-8

    Article  CAS  Google Scholar 

  29. Tanriseven A, Dogan S (2002) Process Biochem 37:1111–1115. doi:10.1016/S0032-9592(01)00319-3

    Article  CAS  Google Scholar 

  30. Nakanishi T, Nomura S, Takeda Y (2006) J Appl Glycosci 53:215–222

    CAS  Google Scholar 

  31. Jahnel J, Ilieva P, Frimmel F (1998) Fresenius J Anal Chem 360:827–829. doi:10.1007/s002160050819

    Article  CAS  Google Scholar 

  32. Cataldi T, Campa C, De Benedetto G (2000) Fresenius J Anal Chem 368:739–758. doi:10.1007/s002160000588

    Article  CAS  Google Scholar 

  33. Koizumi K, Kubota Y, Tanimoto T, Okada Y (1989) J Chromatogr A 464(2):365–373

    CAS  Google Scholar 

  34. Campa C, Ous A, Skjåk-Bræk G, Paulsen B, Paoletti S, Christensen B et al (2004) J Chromatogr A 1026:271–281. doi:10.1016/j.chroma.2003.11.045

    Article  CAS  Google Scholar 

  35. Fischer D, Geyer A, Loos E (2006) FEBS J 273:137–149. doi:10.1111/j.1742-4658.2005.05050.x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the Walloon Region and the company Meurens Natural throughout the FIRST DEI IMOBIOSE research project. We would like to thank Professor Eckhard Loos for providing us the kojioligosaccharides.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothée Goffin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goffin, D., Robert, C., Wathelet, B. et al. A Step-Forward Method of Quantitative Analysis of Enzymatically Produced Isomaltooligosaccharide Preparations by AEC-PAD. Chroma 69, 287–293 (2009). https://doi.org/10.1365/s10337-008-0875-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0875-0

Keywords

Navigation