Skip to main content
Log in

Direct TLC Resolution of (±)-Ketamine and (±)-Lisinopril by Use of (+)-Tartaric Acid or (−)-Mandelic Acid as Impregnating Reagents or Mobile Phase Additives. Isolation of the Enantiomers

  • Full Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Direct resolution of the enantiomers of the racemic drugs ketamine and lisinopril has been achieved by TLC. Enantiomerically pure tartaric acid and mandelic acid were used as chiral impregnating reagents and as mobile phase additives. When (−)-mandelic acid was used as chiral impregnating reagent use of ethyl acetate–methanol–water 3:1:1 (v/v) as mobile phase enabled successful resolution of the enantiomers of both compounds. For lisinopril, the mobile phase acetonitrile–methanol–water–dichloromethane 7:1:1:0.5 (v/v) was successful when (+)-tartaric acid was used as impregnating agent. When (+)-tartaric acid was used as mobile phase additive the mobile phase acetonitrile–methanol(+)-tartaric acid (0.5% in water, pH 5)–glacial acetic acid 7:1:1.1:0.7 (v/v) enabled successful resolution of the enantiomers of lisinopril. The effects on resolution of temperature, pH, and the amount of chiral selector were also studied. The separated enantiomers were isolated and identified. Spots were detected with iodine vapour. LODs were 0.25 and 0.27 μg for each enantiomer of ketamine with (+)-tartaric acid and (−)-mandelic acid, respectively, whereas for lisinopril LODs were 0.14 and 0.16 μg for each enantiomer with (+)-tartaric acid (both conditions) and (−)-mandelic acid, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bhutta AT (2007) Semin Perinatol 31:303–308. doi:10.1053/j.semperi.2007.07.005

    Article  Google Scholar 

  2. White PF, Ham J, Way WL, Trevor AJ (1980) Anesthesiology 52:231–239. doi:10.1097/00000542-198003000-00008

    Article  CAS  Google Scholar 

  3. Ihmsen H, Geisslinger G, Schuttler J (2001) Clin Pharmacol Ther 70:431–438. doi:10.1067/mcp.2001.119722

    Article  CAS  Google Scholar 

  4. Oye I, Paulsen O, Maurset A (1992) J Pharmacol Exp Ther 260:1209–1213

    CAS  Google Scholar 

  5. Marietta MP, Way WL, Castagnoli N, Trevor AJ (1977) J Pharmacol Exp Ther 202:157–165

    CAS  Google Scholar 

  6. White PF, Shuttler J, Shafer A, Stanski DR, Horai Y, Trevor AJ (1985) Br J Anaesth 57:197–203. doi:10.1093/bja/57.2.197

    Article  CAS  Google Scholar 

  7. White PF, Way WL, Trevor AJ (1982) Anesthesiology 56:119–136

    Article  CAS  Google Scholar 

  8. Reich DL, Silvay G (1989) Can J Anaesth 36:186–197

    Article  CAS  Google Scholar 

  9. Himmelseher S, Durieux ME (2005) Anesth Analg 101:524–534. doi:10.1213/01.ANE.0000160585.43587.5B

    Article  CAS  Google Scholar 

  10. Koinig H, Marhofer P (2003) Paediatr Anaesth 13:185–187. doi:10.1046/j.1460-9592.2003.01000.x

    Article  CAS  Google Scholar 

  11. Pees C, Haas NA, Ewert P, Berger F, Lange PE (2003) Pediatr Cardiol 24:424–429. doi:10.1007/s00246-002-0356-4

    Article  CAS  Google Scholar 

  12. Mutschler E, Derendorf H, Schhäfer-Korting K, Elord K, Estes S (1995) In: Basic principles and therapeutic aspects. Medpharm Scientific Publishers, Stuttgart, pp 385–390

  13. Oi N, Kitahara H, Matsushita Y, Kisu N (1996) J Chromatogr A 722:229–232. doi:10.1016/0021-9673(95)00665-6

    Article  CAS  Google Scholar 

  14. Stringham RW, Ye YK (2006) J Chromatogr A 1101:86–93. doi:10.1016/j.chroma.2005.09.065

    Article  CAS  Google Scholar 

  15. Rodriguez RME, Patel S, Wainer IW (2003) J Chromatogr B Analyt Technol Biomed Life Sci 794:99–108. doi:10.1016/S1570-0232(03)00420-3

    Article  CAS  Google Scholar 

  16. Svensson JO, Gustafsson LL (1996) J Chromatogr B Analyt Technol Biomed Life Sci 678:373–376. doi:10.1016/0378-4347(95)00545-5

    Article  CAS  Google Scholar 

  17. Adams JD Jr, Woolf TF, Trevor AJ, Williams LR, Castagnoli N Jr (1982) J Pharm Sci 71:658–661. doi:10.1002/jps.2600710613

    Article  CAS  Google Scholar 

  18. Han X, Berthod A, Wang C, Huang K, Armstrong DW (2007) Chromatographia 65:381–400. doi:10.1365/s10337-007-0182-1

    Article  CAS  Google Scholar 

  19. Theurillat R, Knobloch M, Schmitz A, Lassahn P-G, Mevissen M, Thormann W (2007) Electrophoresis 28:2748–2757. doi:10.1002/elps.200600820

    Article  CAS  Google Scholar 

  20. Qin XZ, Nguyen DST, Ip DP (1993) J Liq Chromatogr 16:3713–3734. doi:10.1080/10826079308019663

    Article  CAS  Google Scholar 

  21. Berger TA, Smith J, Fogelman K, Kruluts K (2002) Am Lab 34:14–20

    CAS  Google Scholar 

  22. Bhushan R, Martens J (2003) In: Sherma J, Fried B (eds) Handbook of TLC, 3rd edn. Marcel Dekker, New York, pp 373–415

  23. Bhushan R, Ali I (1987) J Chromatogr A 392:460–463. doi:10.1016/S0021-9673(01)94292-X

    Article  CAS  Google Scholar 

  24. Bhushan R, Martens J, Arora M (2001) Biomed Chromatogr 15:151–154. doi:10.1002/bmc.55

    Article  CAS  Google Scholar 

  25. Bhushan R, Tanwar S (2008) Biomed Chromatogr 22:1028–1034. doi:10.1002/bmc.1025

    Article  CAS  Google Scholar 

  26. Prieto JA, Akesolo U, Jimenez RM, Alonso RM (2001) J Chromatogr A 916:279–288. doi:10.1016/S0021-9673(01)00565-9

    Article  CAS  Google Scholar 

  27. Bhushan R, Ali I (1987) Chromatographia 23:141–144. doi:10.1007/BF02312891

    Article  CAS  Google Scholar 

  28. Armstrong DW, Chen S, Chang C, Chang S (1992) J Liq Chromatogr 15:545–556. doi:10.1080/10826079208017191

    Article  CAS  Google Scholar 

  29. Matchet MW, Branch SK, Jefferies TM (1996) Chirality 8:126–130. doi:10.1002/(SICI)1520-636X(1996)8:1<;126::AID-CHIR18>;3.0.CO;2-P

    Article  Google Scholar 

  30. Simmons BR, Stewart TJ (1994) J Liq Chromatogr 17:2675–2690. doi:10.1080/10826079408013407

    Article  CAS  Google Scholar 

  31. Bhushan R, Agarwal C (2008) J Planar Chromatogr 21:129–134. doi:10.1556/JPC.21.2008.2.10

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the Ministry of Human Resources Development, Government of India, New Delhi, for the award of a research assistantship (to C.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Bhushan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhushan, R., Agarwal, C. Direct TLC Resolution of (±)-Ketamine and (±)-Lisinopril by Use of (+)-Tartaric Acid or (−)-Mandelic Acid as Impregnating Reagents or Mobile Phase Additives. Isolation of the Enantiomers. Chroma 68, 1045–1051 (2008). https://doi.org/10.1365/s10337-008-0856-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0856-3

Keywords

Navigation