Skip to main content
Log in

A Glass/PDMS Hybrid Microfluidic Chip Embedded with Integrated Electrodes for Contactless Conductivity Detection

  • Full Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A new glass/PDMS hybrid chip for contactless conductivity detection is reported. This chip consists of a glass substrate with microchannels and a PDMS cover sheet embedded with a small integrated electrode plate. In the region of detection, electrodes are insulated from the microchannel by a formed PDMS membrane about 100 μm in thickness. Without any modification, this glass/PDMS chip is suitable for contactless conductivity detection with good properties, such as excellent heat-dissipation, stable electroosmotic flow, high separation efficiency, satisfactory sensitivity, simple construction and high degree of integration. Its feasibility and performance had been demonstrated by analyzing inorganic ions and amino acids in mixtures, and alkaloids in traditional Chinese medicine. The limits of detection reached micromole per liter (μmol L−1) levels. This microchip could be promising for mass production due to its stability, reproducibility, ease of fabrication and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. da Silva JAF, do Lago CL (1998) Anal Chem 70:4339–4343. doi:10.1021/ac980185g

    Article  Google Scholar 

  2. Zemann AJ, Schnell E, Volgger D, Bonn GK (1998) Anal Chem 70:563–567. doi:10.1021/ac9707592

    Article  CAS  Google Scholar 

  3. Pumera M (2007) Talanta 74:358–364. doi:10.1016/j.talanta.2007.05.058

    Article  CAS  Google Scholar 

  4. Lichtenberg J, de Rooij NF, Verpoorte E (2002) Electrophoresis 23:3769–3780. doi :10.1002/1522–2683(200211)23:21<3769::AID-ELPS3769>3.0.CO;2-E

    Article  CAS  Google Scholar 

  5. Guijt RM, Baltussen E, van der Steen G, Frank H, Billiet H, Schalkhammer T et al (2001) Electrophoresis 22:2537–2541. doi :10.1002/1522–2683(200107)22:12<2537::AID-ELPS2537>3.0.CO;2-C

    Article  CAS  Google Scholar 

  6. Berthold A, Laugere F, Schellevis H, de Boer CR, Laros M, Guijt RM et al (2002) Electrophoresis 23:3511–3519. doi :10.1002/1522-2683(200210)23:20<3511::AID-ELPS3511>3.0.CO;2-C

    Article  CAS  Google Scholar 

  7. Laugere F, Lubking GW, Bastemeijer J, Vellekoop MJ (2002) Sens Actuators B Chem 83:104–108. doi:10.1016/S0925-4005(01)01051-6

    Article  Google Scholar 

  8. Laugere F, Guijt RM, Bastemeijer J, Steen G, Berthold A, Baltussen E et al (2003) Anal Chem 75:306–312. doi:10.1021/ac0157371

    Article  CAS  Google Scholar 

  9. Pumera M, Wang J, Opekar F, Jelinek I, Feldman J, Lowe H et al (2002) Anal Chem 74:1968–1971. doi:10.1021/ac011219e

    Article  CAS  Google Scholar 

  10. Wang J, Chen G, Muck A Jr (2003) Anal Chem 75:4475–4479. doi:10.1021/ac030122k

    Article  CAS  Google Scholar 

  11. Tanyanyiwa J, Abad-Villar EM, Fernandez-Abedul MT, Costa-Garcia A, Hoffmann W, Guber AE et al (2003) Analyst (Lond) 128:1019–1022. doi:10.1039/b304469f

    Article  CAS  Google Scholar 

  12. Tanyanyiwa J, Abad-Villar EM, Fernandez-Abedul MT, Costa-Garcia A, Hoffmann W, Guber AE et al (2004) Electrophoresis 25:903–908. doi:10.1002/elps.200305732

    Article  CAS  Google Scholar 

  13. Abad-Villar EM, Tanyanyiwa J, Fernandez-Abedul MT, Costa-Garcia A, Hausern PC (2004) Anal Chem 76:1282–1288. doi:10.1021/ac0346656

    Article  CAS  Google Scholar 

  14. Tuma P, Samcova E, Opekar F, Jurka V, Stulik K (2007) Electrophoresis 28:2174–2180. doi:10.1002/elps.200600697

    Article  CAS  Google Scholar 

  15. Chen ZG, Li QW, Li OL, Zhou X, Lan Y, Wei YF et al (2007) Talanta 71:1944–1950. doi:10.1016/j.talanta.2006.08.040

    Article  CAS  Google Scholar 

  16. Kuban P, Houser PC (2008) Anal Chim Acta 607:25–29. doi:10.1016/j.aca.2007.11.045

    Article  Google Scholar 

  17. Chen Y, Yang PY, Li JH, Chen D, Chen G (2006) Anal Bioanal Chem 384:683–691. doi:10.1007/s00216-005-0231-2

    Article  CAS  Google Scholar 

  18. Wang J, Pumera M, Chatrathi MP, Escarpa A, Konrad R, Griebel A et al (2002) Electrophoresis 23:596–601. doi :10.1002/1522-2683(200202)23:4<596::AID-ELPS596>3.0.CO;2-C

    Article  CAS  Google Scholar 

  19. Kim JH, Kang CJ, Jeon D, Kin YS (2005) Microelectron Eng 78–79:563–570. doi:10.1016/j.mee.2005.01.016

    Article  Google Scholar 

  20. Li HF, Lin JM, Su RG, Cai ZW, Uchiyama K (2005) Electrophoresis 26:1825–1833. doi:10.1002/elps.200410357

    Article  CAS  Google Scholar 

  21. Liu CC, Cui DF (2005) Microsyst Technol 11:1262–1266. doi:10.1007/s00542-005-0608-3

    Article  CAS  Google Scholar 

  22. Liu CC, Cui DF, Cai HY, Chen X, Geng ZX (2006) Electrophoresis 27:2917–2923. doi:10.1002/elps.200500581

    Article  CAS  Google Scholar 

  23. Qu XF, Sang FM, Ren JC (2006) J Sep Sci 29:2390–2394. doi:10.1002/jssc.200600176

    Article  CAS  Google Scholar 

  24. Zhang SF, Wang LS, Chen ZG, Dang Z, Chen HQ, Deng XR (2006) Chin J Anal Chem 34:150–158

    Article  Google Scholar 

  25. Chen G, Bao HM, Li JH, Chen D (2006) Mikrochim Acta 153:151–158. doi:10.1007/s00604-005-0436-2

    CAS  Google Scholar 

  26. Qu S, Chen XH, Chen D, Yang PY, Chen G (2006) Electrophoresis 27:4910–4918. doi:10.1002/elps.200600239

    Article  CAS  Google Scholar 

  27. Mazurczyk R, Vieillard J, Bouchard A, Hannes B, Krawczyk S (2006) Sens Actuators B Chem 118:11–19. doi:10.1016/j.snb.2006.04.069

    Article  Google Scholar 

  28. Vieillard J, Mazurczyk R, Morin C, Hannes B, Chevolot Y, Desbene PL et al (2007) J Chromatogr B Analyt Technol Biomed Life Sci 845:218–225. doi:10.1016/j.jchromb.2006.08.009

    Article  CAS  Google Scholar 

  29. Liu CY, Xu X, Gao HJ, Chen JR (2007) Chin Chem Lett 18:221–224

    Article  Google Scholar 

  30. Ma B, Zhou XM, Wang G, Dai ZP, Qin JH, Lin BC (2007) Electrophoresis 28:2474–2477. doi:10.1002/elps.200600619

    Article  CAS  Google Scholar 

  31. Grabowska I, Stadnik D, Chudy M, Dybko A, Brzozka Z (2007) Sens Actuators B Chem 121:445–451. doi:10.1016/j.snb.2006.04.101

    Article  Google Scholar 

  32. Wang J, Pumera M (2003) Anal Chem 75:341–345. doi:10.1021/ac0205210

    Article  CAS  Google Scholar 

  33. Vicker JA, Caulum MM, Henry CS (2006) Anal Chem 78:7446–7452. doi:10.1021/ac0609632

    Article  Google Scholar 

  34. Ren LQ, Escobedo-Canseco C, Li DQ (2002) J Colloid Interface Sci 250:238–24. doi:10.1006/jcis.2002.8299

    Article  CAS  Google Scholar 

  35. Wang J, Pumera M, Colins G, Mulchandani A (2002) Anal Chem 74:6121–6125

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (NSFC, Grant Nos. 20375049, 20575080, and 20727006) and engineer Hexian Situ and Mr Chunlin Chen for their help in revising this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuan-Guang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, OL., Tong, YL., Chen, ZG. et al. A Glass/PDMS Hybrid Microfluidic Chip Embedded with Integrated Electrodes for Contactless Conductivity Detection. Chroma 68, 1039–1044 (2008). https://doi.org/10.1365/s10337-008-0808-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0808-y

Keywords

Navigation