Skip to main content
Log in

Enhancement of Fluorescence Intensity of Tramadol and Its Main Metabolites in LC Using Pre-Column Derivatization with 9-Fluorenylmethyl Chloroformate

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Tramadol was found to exhibit weak fluorescence with a maximum emission at 300 nm when excited at 200 nm. Also, fluorescence spectra of the drug and its two main metabolites, O-desmethyltramadol and N-desmethyltramadol are not practically identical. Thus low and different sensitivities have been reported for the drug and its metabolites in previously published work. In the present method using 9-fluorenylmethyl chloroformate (FMOC-Cl) as labeling agent, equal and magnified fluorescence intensity were obtained for the analytes. The drug, its metabolites and an internal standard (oseltamivir phosphate) were extracted from serum by dichloromethane. Pre-column derivatization of the analytes was achieved using FMOC-Cl in the presence of borate buffer (0.1 M, pH 7.5). Liquid chromatography with a mobile phase consisting of a mixture of 0.05 M phosphate buffer containing triethylamine (2 ml L−1; pH = 3.0) and methanol (54:46; v/v) and a Shimpack CLC-ODS column were used for analytical separation of the analytes. The fluorescence of the column effluent was monitored at an excitation and emission wavelengths of 265 and 315 nm, respectively. The analytical method was linear over the concentration range of 1.0–1,280 ng mL−1 of the parent drug and its metabolites and limit of quantification of 1.0 ng mL−1 was obtained for the analytes using 10 μL injection. The method validation was studied and the validated method applied in a bioequivalence study of 2 different tramadol preparations in 24 healthy volunteers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee CR, McTavis D, Sorkin E (1993) Drugs 46:313–340. doi:10.2165/00003495-199346020-00008

    Article  CAS  Google Scholar 

  2. Tao Q, Stone DJ Jr, Borenstein MR, Jean-Bart V, Codd EE, Coogan TP, Desai-Krieger D, Liao S, Raffa RB (2001) J Chromatogr B 763:165–171. doi:10.1016/S0378-4347(01)00388-7

    Article  CAS  Google Scholar 

  3. Ho S-T, Wang J-J, Liaw W-J, Ho Ch-M, Li J-H (1999) J Chromatogr B 736:89–96. doi:10.1016/S0378-4347(99)00434-X

    Article  CAS  Google Scholar 

  4. Sha YF, Shenb S, Duan GL (2005) J Pharm Biomed Anal 37:143–147. doi:10.1016/j.jpba.2004.09.050

    Article  CAS  Google Scholar 

  5. Gambaro V, Benvenuti C, Ferrari LD, Acqua LD, Fare F (2003) II Farmaco 58:947–950. doi:10.1016/S0014-827X(03)00153-8

    Article  CAS  Google Scholar 

  6. Valle M, Pavon JM, Calvo R, Campanero MA, Troconiz IF (1999) J Chromatogr B 724:83–89. doi:10.1016/S0378-4347(98)00547-7

    Article  CAS  Google Scholar 

  7. Kmetec V, Roskar R (2003) J Pharm Biomed Anal 32:1061–1066. doi:10.1016/S0731-7085(03)00209-7

    Article  CAS  Google Scholar 

  8. Gan SH, Ismail R, Wan Adnan WA, Wan Z (2002) J Chromatogr B 772:123–129. doi:10.1016/S1570-0232(02)00065-X

    Article  CAS  Google Scholar 

  9. Yeh GC, Sheu MT, Yen CL, Wang YW, Liu CH, Ho HO (1999) J Chromatogr B 723:247–253

    Article  CAS  Google Scholar 

  10. Elsing B, Blaschke G (1999) J Chromatogr 612 (2) (1993) 223–30

  11. Overbeck P, BlaschkeJ G (1999) Chromatogr B Biomed Sci Appl 732(1):185–192

    Article  CAS  Google Scholar 

  12. Gan SH, Ismail R (2001) J Chromatogr B 759:325–335. doi:10.1016/S0378-4347(01)00237-7

    Article  CAS  Google Scholar 

  13. K¨uc¨uka A, Kadıoglub Y, Celebi F (2005) J Chromatogr B 816:203–208. doi:10.1016/j.jchromb.2004.11.031

    Article  Google Scholar 

  14. Nobilis M, Kopecky J, Kvetina J, Chladek J, Svoboda Z, Vorısek V, Perlık F, Pour M, Kunes J (2002) J Chromatogr A 949:11–22. doi:10.1016/S0021-9673(01)01567-9

    Article  CAS  Google Scholar 

  15. Gu Y, Fawcett JP (2005) J Chromatogr B 821:240–243. doi:10.1016/j.jchromb.2005.05.003

    Article  CAS  Google Scholar 

  16. Rouini MR, Hosseinzadeh Ardakani Y, Soltani F, Aboul-Enein HY, Foroumad A (2006) J Chromatogr B 830:207–211. doi:10.1016/j.jchromb.2005.10.039

    Article  CAS  Google Scholar 

  17. Soetebeer UB, Schierenberg M-O, Moller J-G, Schulz H, Grunefeld G, Andresen P, Blaschke G, Ahr G (2000) J Chromatogr A 895:147–155. doi:10.1016/S0021-9673(00)00704-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Bakhtar Bioshimi Pharmaceutical Company and partially by Kermanshah University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Bahrami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahrami, G., Mohammadi, B. Enhancement of Fluorescence Intensity of Tramadol and Its Main Metabolites in LC Using Pre-Column Derivatization with 9-Fluorenylmethyl Chloroformate. Chroma 68, 935–940 (2008). https://doi.org/10.1365/s10337-008-0806-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0806-0

Keywords

Navigation