Skip to main content
Log in

Effect of Column Temperature on the Retention of Inorganic Anions and Organic Acids in Non-Suppressed Anion-Exchange IC

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

An investigation has been conducted into the effect of column temperature on the retention of inorganic anions and organic acids in non-suppressed ion chromatography on an anion-exchange column. Potassium biphthalate and p-hydroxybenzoic acid–tris–boric acid were used as mobile phases. The column temperature was from 25 to 50 °C. Endothermic and exothermic retention of inorganic anions were both observed when potassium biphthalate was used as mobile phase. When p-hydroxybenzoic acid–tris–boric acid was used as mobile phase, however, endothermic behavior only was observed. Moreover, for the two mobile phases, variation of the retention time of the system peaks with changing temperature was reversed. For retention of the organic acids, only endothermic behavior was observed with the two mobile phases. Variation of retention time was greater when p-hydroxybenzoic acid–tris–boric acid was used as mobile phase than when potassium biphthalate was used. These results indicated the exchange reaction in anion-exchange chromatography could be either endothermic or exothermic, depending on the solute and mobile phase ions involved. Different relative changes of retention time were observed for individual inorganic anions and organic acids with increasing column temperature. In general, variation of retention time with increasing temperature was greater for strongly retained inorganic anions and organic acids than for weakly retained species. Van’t Hoff plots for inorganic anions, organic acids, and system peaks were linear. Selectivity variation of the retention of inorganic anions and organic acids was achieved by changing the temperature. In achieving optimum separation of inorganic anions and organic acids, temperature was a valuable tool. To reduce the retention times of the ions and avoid interference from system peaks in non-suppressed anion-exchange ion chromatography with the two mobile phases, a low column temperature, for example, 35 °C, was best.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. López-Ruiz B (2000) J Chromatogr A 881:607–627. doi:10.1016/S0021-9673(00)00244-2

    Article  Google Scholar 

  2. Shaw MJ, Haddad PR (2004) Environ Int 30:403–431. doi:10.1016/j.envint.2003.09.009

    Article  CAS  Google Scholar 

  3. Fischer K (2002) Anal Chim Acta 465:157–173. doi:10.1016/S0003-2670(02)00204-0

    Article  CAS  Google Scholar 

  4. Yu H, Ding YS, Mou SF, Jandik P, Cheng J (2002) J Chromatogr A 966:89–97. doi:10.1016/S0021-9673(02)00739-2

    Article  CAS  Google Scholar 

  5. Yu H, Ding YS, Mou SF (2003) Chromatographia 57:721–728. doi:10.1007/BF02491757

    Article  CAS  Google Scholar 

  6. Small H, Stevens TS, Bauman WC (1975) Anal Chem 47:1801–1809. doi:10.1021/ac60361a017

    Article  CAS  Google Scholar 

  7. Gjerde DT, Fritz JS, Schmuckler G (1979) J Chromatogr A 186:509–519. doi:10.1016/S0021-9673(00)95271-3

    Article  CAS  Google Scholar 

  8. Yu H (1997) J Chromatogr A 769:333–337. doi:10.1016/S0021-9673(97)00003-4

    Article  CAS  Google Scholar 

  9. Zhu PL, Snyder LR, Dolan JW, Djordjevic NM, Hill DW, Sander LC et al (1996) J Chromatogr A 756:21–39. doi:10.1016/S0021-9673(96)00721-2

    Article  CAS  Google Scholar 

  10. Pietrogrande MC, Benvenuti A, Dondi F (2000) Chromatographia 51:193–198. doi:10.1007/BF02490564

    Article  CAS  Google Scholar 

  11. Dolan JW (2002) J Chromatogr A 965:195–205. doi:10.1016/S0021-9673(01)01321-8

    Article  CAS  Google Scholar 

  12. Greibrokk T, Andersen T (2003) J Chromatogr A 1000:743–755. doi:10.1016/S0021-9673(02)01963-5

    Article  CAS  Google Scholar 

  13. Guillarme D, Heinisch S, Rocca JL (2004) J Chromatogr A 1052:39–51. doi:10.1016/j.chroma.2004.08.052

    Article  CAS  Google Scholar 

  14. Ahmad T, Guiochon G (2006) J Chromatogr A 1129:174–188. doi:10.1016/j.chroma.2006.06.108

    Article  CAS  Google Scholar 

  15. Poplewska I, Piatkowski W, Antos D (2006) J Chromatogr A 1103:284–295. doi:10.1016/j.chroma.2005.11.038

    Article  CAS  Google Scholar 

  16. Yang Y (2006) Anal Chim Acta 558:7–10. doi:10.1016/j.aca.2005.11.011

    Article  CAS  Google Scholar 

  17. Stoll DR, Cohen JD, Carr PW (2006) J Chromatogr A 1122:123–137. doi:10.1016/j.chroma.2006.04.058

    Article  CAS  Google Scholar 

  18. Riddle LA, Guiochon G (2006) J Chromatogr A 1137:173–179. doi:10.1016/j.chroma.2006.10.008

    Article  CAS  Google Scholar 

  19. Hazotte A, Libong D, Chaminade P (2007) J Chromatogr A 1140:131–139. doi:10.1016/j.chroma.2006.11.067

    Article  CAS  Google Scholar 

  20. Pesek JJ, Matyska MT, Hearn MTW, Boysen R (2007) J Sep Sci 30:1150–1157. doi:10.1002/jssc.200700005

    Article  CAS  Google Scholar 

  21. Yang Y (2007) J Sep Sci 30:1131–1140. doi:10.1002/jssc.200700008

    Article  CAS  Google Scholar 

  22. McNeff CV, Yan B, Stoll DR, Henry RA (2007) J Sep Sci 30:1672–1685. doi:10.1002/jssc.200600526

    Article  CAS  Google Scholar 

  23. Fortier NE, Fritz JS (1987) Talanta 34:415–418. doi:10.1016/0039-9140(87)80062-0

    Article  CAS  Google Scholar 

  24. Lee HK, Hoffman NE (1994) J Chromatogr Sci 32:97–101

    CAS  Google Scholar 

  25. Landberg E, Lundblad A, Pahlsson P (1998) J Chromatogr A 814:97–104. doi:10.1016/S0021-9673(98)00381-1

    Article  CAS  Google Scholar 

  26. Busch M, Seubert A (1999) Anal Chim Acta 399:223–235. doi:10.1016/S0003-2670(99)00465-1

    Article  CAS  Google Scholar 

  27. Panagiotopoulos C, Sempéré R, Lafont R, Kerhervé P (2001) J Chromatogr A 920:13–22. doi:10.1016/S0021-9673(01)00697-5

    Article  CAS  Google Scholar 

  28. Hatsis P, Lucy CA (2001) Analyst 126:2113–2118. doi:10.1039/b106639k

    Article  CAS  Google Scholar 

  29. Dybczynski R, Kulisa K (2003) Chromatographia 57:475–484. doi:10.1007/BF02492544

    Article  CAS  Google Scholar 

  30. Kolpachnikova MG, Penner NA, Nesterenko PN (1998) J Chromatogr A 826:15–23. doi:10.1016/S0021-9673(98)00700-6

    Article  CAS  Google Scholar 

  31. Haidekker A, Huber CG (2001) J Chromatogr A 921:217–226. doi:10.1016/S0021-9673(01)00868-8

    Article  CAS  Google Scholar 

  32. Shaw MJ, Nesterenko PN, Dicinoski GW, Haddad PR (2003) J Chromatogr A 997:3–11. doi:10.1016/S0021-9673(03)00111-0

    Article  CAS  Google Scholar 

  33. Chong J, Hatsis P, Lucy CA (2003) J Chromatogr A 997:161–169. doi:10.1016/S0021-9673(03)00549-1

    Article  CAS  Google Scholar 

  34. Hatsis P, Lucy CA (2001) J Chromatogr A 920:3–11. doi:10.1016/S0021-9673(00)01226-7

    Article  CAS  Google Scholar 

  35. Barron L, Nesterenko PN, Paull B (2005) J Chromatogr A 1072:207–215. doi:10.1016/j.chroma.2005.03.028

    Article  CAS  Google Scholar 

  36. Yu H, Mou SF (2006) J Chromatogr A 1118:118–124. doi:10.1016/j.chroma.2005.12.051

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Li, R. Effect of Column Temperature on the Retention of Inorganic Anions and Organic Acids in Non-Suppressed Anion-Exchange IC. Chroma 68, 611–616 (2008). https://doi.org/10.1365/s10337-008-0774-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0774-4

Keywords

Navigation