Skip to main content
Log in

Phenylisothiocyanate as a Multiple Chemical Dimension Reagent for the Relative Quantitation of Protein Nitrotyrosine

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A highly selective sequential derivatization sequence has been developed for the transformation of 3-nitrotyrosine to a 2-anilino-benzoxazole derivative. This sequence can be applied to any ortho-nitrophenol, such as 3-nitrotyrosine or 3-nitrotyrosine residues present in proteins and/or peptides as a result of oxidative stress. The sequence involves a standard reduction of the nitro functional group to the corresponding amine using aqueous dithionite, followed by aqueous solution coupling with phenylisothiocyanate (PITC) and then eventual product formation by a photochemical mediated intramolecular cyclization of the intermediate thiourea. While this cyclization step has been effected numerous times by various reagents commonly used in synthetic organic chemistry, many requiring non-aqueous reaction media, the present transformation appears to the be first description this reaction using 350 nm light in aqueous media. The resulting overall transformation provides a specific mass shift signature of 116 amu when conducted with 1H5-PITC and 121 amu with 2H5-PITC, thus forming the basis of relative quantitation by MS detection. In preliminary experiments, relative quantitation was accomplished for the decapeptide angiotensin I that had been subjected to nitration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davies MJ (2005) Biochim Biophys Acta 1703:93–109

    CAS  Google Scholar 

  2. Radi R (2004) Proc Natl Acad Sci USA 101:4003–4008. doi:10.1073/pnas.0307446101

    Article  CAS  Google Scholar 

  3. Greenacre SAB, Ischiropoulos H (2000) Free Radic Res 34:541–581. doi:10.1080/10715760100300471

    Article  Google Scholar 

  4. Sachsterder CA, Qian WJ, Knyushko TV, Wang H, Chin MH, Lacan G et al (2006) Biochemistry 45:8009–8022. doi:10.1021/bi060474w

    Article  CAS  Google Scholar 

  5. Leeuwenburgh C, Hardy MM, Hazen SL, Wagner P, Oh-Ishi S, Steibrecher UP et al (1997) J Biol Chem 272:1433–1436. doi:10.1074/jbc.272.3.1433

    Article  CAS  Google Scholar 

  6. Ambs S, Merriam WG, Bennet WP, Pelley-Bosco E, Ogunfusika MO, Oser SM et al (1998) Cancer Res 58:334–341

    CAS  Google Scholar 

  7. Aslan M, Ozben T (2004) Curr Alzheimer Res 1:111–119. doi:10.2174/1567205043332162

    Article  CAS  Google Scholar 

  8. Butterfield DA (2004) Brain Res 1000:1–7. doi:10.1016/j.brainres.2003.12.012

    Article  CAS  Google Scholar 

  9. Drew B, Leeuwenburgh C (2002) Ann N Y Acad Sci 959:66–81

    CAS  Google Scholar 

  10. Ischiropoulos H (2003) Biochem Biophys Res Commun 305:776–783. doi:10.1016/S0006-291X(03)00814-3

    Article  CAS  Google Scholar 

  11. Quint P, Reutzel R, Mikulski R, McKenna R, Silverman DN (2006) Free Radic Biol Med 40:625–631. doi:10.1016/j.freeradbiomed.2005.08.045

    Article  CAS  Google Scholar 

  12. Park S, Huq MD, Hu X, Wei LN (2005) Mol Cell Proteomics 4:300–309. doi:10.1074/mcp.M400195-MCP200

    Article  CAS  Google Scholar 

  13. Sahoo R, Dutta T, Das A, Sinha RS, Sengupta R, Ghosh S (2006) Free Radic Biol Med 40:625–631. doi:10.1016/j.freeradbiomed.2005.09.029

    Article  CAS  Google Scholar 

  14. Zheng L, Nukuna B, Brennan ML, Sun M, Goormastic M, Settle M et al (2004) J Clin Invest 114:529–541

    CAS  Google Scholar 

  15. Xu S, Ying J, Jiang B, Guo W, Adachi T, Sharov V et al (2006) Am J Physiol Heart Circ Physiol 290:H2220–H2227. doi:10.1152/ajpheart.01293.2005

    Article  CAS  Google Scholar 

  16. Phung AD, Soucek K, Kubala L, Harper RW, Chlo-Bulinski J, Eiserich JP (2006) Eur J Cell Biol 85:1241–1252. doi:10.1016/j.ejcb.2006.05.016

    Article  CAS  Google Scholar 

  17. Dalle-Donne I, Scaloni A, Gliustarini D, Cavarra E, Tell G, Lungarella G et al (2005) Mass Spectrom Rev 24:55–99. doi:10.1002/mas.20006

    Article  CAS  Google Scholar 

  18. Davies MJ, Fu S, Wang H, Dean RT (1999) Free Radical Med Biol 27:1151–1163

    Article  CAS  Google Scholar 

  19. Beal MF (2002) Free Radic Biol Med 32:797–803. doi:10.1016/S0891-5849(02)00780-3

    Article  CAS  Google Scholar 

  20. Crow JP (1999) Methods Enzymol 301:151–160

    Article  CAS  Google Scholar 

  21. Kamisaki Y, Wada K, Nakamoto K, Kishimoto Y, Kitaqno M, Itoh T (1996) J Chromatogr B Analyt Technol Biomed Life Sci 685:343–347. doi:10.1016/S0378-4347(96)00202-2

    Article  CAS  Google Scholar 

  22. Yang Q, Zhang XL, Ma M, Huang KJ, Zhang JX, Ni WZ et al (2007) J Chromatogr A 1146:23–31. doi:10.1016/j.chroma.2007.01.077

    Article  CAS  Google Scholar 

  23. Duncan MW (2003) Amino Acids 25:351–361. doi:10.1007/s00726-003-0022-z

    Article  CAS  Google Scholar 

  24. Tsikas D, Caidahl K (2005) J Chromatogr B Analyt Technol Biomed Life Sci 814:1–9. doi:10.1016/j.jchromb.2004.10.003

    Article  CAS  Google Scholar 

  25. Kanski J, Alterman MA, Schöneich C (2003) Free Radic Biol Med 35:1229–1239. doi:10.1016/S0891-5849(03)00500-8

    Article  CAS  Google Scholar 

  26. Kanski J, Behring A, Pelling J, Schöneich C (2005) Am J Physiol Heart Circ Physiol 288:H371–H381. doi:10.1152/ajpheart.01030.2003

    Article  CAS  Google Scholar 

  27. Kanski J, Schöneich C (2005) Methods Enzymol 396:160–171. doi:10.1016/S0076-6879(05)96016-3

    Article  CAS  Google Scholar 

  28. Nikov G, Bhat V, Wishnok JS, Tannenbaum SR (2003) Anal Biochem 320:214–222. doi:10.1016/S0003-2697(03)00359-2

    Article  CAS  Google Scholar 

  29. Zhang Q, Qian W-J, Knyusshko TV, Clauss RW, Purvine SO, Moore RJ et al (2007) J Proteome Res 6:2257–2268. doi:10.1021/pr0606934

    Article  CAS  Google Scholar 

  30. Sokolovsky M, Riordan JF, VAllee BL (1967) Biochem Biophys Res Commun 27:20–25. doi:10.1016/S0006-291X(67)80033-0

    Article  CAS  Google Scholar 

  31. Omar A-MME, Habib NS, Aboulwafa OM (1977) Synthesis 864–865. doi:10.1055/s-1977-24609

  32. You S-W, Lee K-J (2001) Bull Korean Chem Soc 22:1270–1272

    CAS  Google Scholar 

  33. Chang HS, Yon GH, Kim YH (1986) Chem Lett 5:1291–1294. doi:10.1246/cl.1986.1291

    Article  Google Scholar 

  34. Ogura H, Mineo S, Nakagawa K (1981) Chem Pharm Bull (Tokyo) 29:1518–1524

    CAS  Google Scholar 

  35. Qian X, Li Z, Song G, Li Z (2001) J Chem Res (S) 138–139

  36. Yoon JH, Song H, Kim SW, Han G, Choo H-YP (2005) Heterocycles 65:2729–2740

    Article  CAS  Google Scholar 

  37. Ishida J, Yamaguchi M, Nakamura M (1991) Analyst (Lond) 116:301–304. doi:10.1039/an9911600301

    Article  CAS  Google Scholar 

  38. Nohta H, Yukizawa T, Ohkura Y, Yoshimura M, Ishida J, Yamaguchi M (1997) Anal Chim Acta 344:233–240. doi:10.1016/S0003-2670(96)00614-9

    Article  CAS  Google Scholar 

  39. Tarr GE (1988) Manual methods for protein/peptide sequence analysis. In: Bhown AS (ed) Protein/peptide sequence analysis: current methodologies. CRC Press, Boca Raton, pp 35–47

    Google Scholar 

  40. Sims P (1959) J Chem Soc 3648–3649

  41. Varma RS, Kumar D (1998) J Heterocycl Chem 35:1539–1540

    CAS  Google Scholar 

  42. Tauer E, Grellman KH (1981) J Org Chem 46:4252–4258. doi:10.1021/jo00334a029

    Article  CAS  Google Scholar 

  43. Zhang R, Sioma CS, Wang S, Regnier FE (2001) Anal Chem 73:5142–5149. doi:10.1021/ac010583a

    Article  CAS  Google Scholar 

  44. Zhang R, Sioma CS, Thomspon RA, Xiong L, Regnier FE (2002) Anal Chem 74:3662–3669. doi:10.1021/ac025614w

    Article  CAS  Google Scholar 

  45. Riordan JF, Sokolovsky M, Valee BL (1966) Biochemistry 5:3582–3589. doi:10.1021/bi00875a029

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by NIH grants AG25350 and AG23551.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Stobaugh.

Additional information

Leon van Haandel and Jacque Killmer contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Haandel, L., Killmer, J., Li, X. et al. Phenylisothiocyanate as a Multiple Chemical Dimension Reagent for the Relative Quantitation of Protein Nitrotyrosine. Chroma 68, 507–516 (2008). https://doi.org/10.1365/s10337-008-0761-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0761-9

Keywords

Navigation