Skip to main content
Log in

An Approximate Linear Solvation Energy Relationships Model Based on Snyder’s Selectivity Parameters. Chromatographic Behavior of Some 1-Aralkyl-4-Arylpiperazines

  • Full Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

In order to elucidate the influence of the mobile phase composition on the retention of some 1-aralkyl-4-arylpiperazines, Snyder’s selectivity and polarity concept for building a simple linear solvation energy relationships model of chromatographic behavior was used. Maximum variability of mobile phase selectivity was achieved by using ternary mixtures of solvents from three different corners of the Snyder selectivity triangle: methanol as a strong proton donor, acetone as a strong proton acceptor and dimethyl formamide as a dipole interactor. Water was added to keep elution strength constant. Mobile phase composition was varied using Simplex–lattice mixture design. Selectivity parameters were calculated on the basis of linear relationships between volume fractions of pure solvents and their χ e , χ d , χ n values. For seven-substituted 1-aralkyl-4-arylpiperazines R M values were measured and correlated with previously calculated selectivity parameters. Mathematical models obtained are discussed according to the structural properties of the studied compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kamlet MJ, Abboud JL, Taft RW (1977) J Am Chem Soc 99:6027–6038. doi:10.1021/ja00460a031

    Article  CAS  Google Scholar 

  2. Taft RW, Kamlet MJ (1976) J Am Chem Soc 98:2886–2894. doi:10.1021/ja00426a036

    Article  CAS  Google Scholar 

  3. Taft RW, Kamlet MJ (1976) J Am Chem Soc 98:377–383. doi:10.1021/ja00426a036

    Article  Google Scholar 

  4. Kamlet MJ, Abboud JL, Abraham MH, Taft RW (1983) J Org Chem 48:2877–2887. doi:10.1021/jo00165a018

    Article  CAS  Google Scholar 

  5. Sadek PC, Carr PW, Doherty RM, Kamlet MJ, Taft RW, Abraham MH (1985) Anal Chem 57:2971–2978. doi:10.1021/ac00291a049

    Article  CAS  Google Scholar 

  6. Carr PW, Doherty RM, Kamlet MJ, Taft RW, Melander W, Horvath C (1986) Anal Chem 58:2674–2680. doi:10.1021/ac00126a021

    Article  CAS  Google Scholar 

  7. Carr PW (1993) Microchem J 48:4–28. doi:10.1006/mchj.1993.1066

    Article  CAS  Google Scholar 

  8. Carr PW (1998) J Chromatogr A 799:1–19. doi:10.1016/S0021-9673(97)01054-6

    Article  Google Scholar 

  9. Tan LC, Carr PW, Abraham M (1996) J Chromatogr A 752:1–18. doi:10.1016/S0021-9673(96)00459-1

    Article  CAS  Google Scholar 

  10. Abraham MH (1993) Chem Soc Rev 22:73–83. doi:10.1039/cs9932200073

    Article  CAS  Google Scholar 

  11. Abraham MH, Roses M (1994) J Phys Org Chem 7:672–684. doi:10.1002/poc.610071205

    Article  CAS  Google Scholar 

  12. Abraham MH, Roses M, Poole CF, Poole SK (1997) J Phys Org Chem 10:358–368. doi :10.1002/(SICI)1099-1395(199705)10:5<358::AID-POC907>3.0.CO;2-N

    Article  CAS  Google Scholar 

  13. Roses M, Boillet P, Poole CF (1998) J Chromatogr A 829:29–40. doi:10.1016/S0021-9673(98)00746-8

    Article  CAS  Google Scholar 

  14. Boillet P, Poole CF, Roses M (1998) Anal Chim Acta 368:129–140. doi:10.1016/S0003-2670(98)00190-1

    Article  Google Scholar 

  15. Jones JL, Rutan SC (1991) Anal Chem 63:1318–1322. doi:10.1021/ac00013a026

    Article  CAS  Google Scholar 

  16. Lu H, Rutan SC (1996) Anal Chem 68:1387–1393. doi:10.1021/ac9507810

    Article  CAS  Google Scholar 

  17. Helburn RS, Rutan SC, Pompano J, Mitchem D, Patterson WT (1994) Anal Chem 66:610–618. doi:10.1021/ac00077a006

    Article  CAS  Google Scholar 

  18. Snyder LR (1974) J Chromatogr A 92:223–230. doi:10.1016/S0021-9673(00)85732-5

    Article  CAS  Google Scholar 

  19. Rutan SC, Carr PW, Cheong WJ, Park JH, Snyder LR (1989) J Chromatogr A 463:21–37. doi:10.1016/S0021-9673(01)84451-4

    Article  CAS  Google Scholar 

  20. Zhang X, Hodgetts K, Rachwal S, Zhao H, Wasley J, Craven K et al (2000) J Med Chem 43:3923–3932. doi:10.1021/jm990562x

    Article  CAS  Google Scholar 

  21. Andrić D, Tovilović G, Roglić G, Šoškić V, Tomić M, Kostić-Rajačić S (2007) J Serb Chem Soc 72:747–755. doi:10.2298/JSC0709747A

    Article  Google Scholar 

  22. Šukalović V, Andrić D, Roglić G, Kostić-Rajačić S, Schrattenholz A, Šoškić V (2005) Eur J Med Chem 40:481–493. doi:10.1016/j.ejmech.2004.10.006

    Article  Google Scholar 

  23. Veličković JĐ, Andrić D, Roglić G, Tešić ŽL, Milojković-Opsenica DM (2004) J Planar Chromatogr 17:255–260. doi:10.1556/JPC.17.2004.4.3

    Article  Google Scholar 

  24. Veličković JĐ, Tešić ŽL, Milojković-Opsenica DM (2005) J Planar Chromatogr 18:358–364. doi:10.1556/JPC.18.2005.5.4

    Article  Google Scholar 

  25. Johnson BP, Khaledi MG, Dorsey JG (1986) Anal Chem 58:2354–2365. doi:10.1021/ac00125a003

    Article  CAS  Google Scholar 

  26. Nyiredy S (2004) J Chromatogr B Analyt Technol Biomed Life Sci 812:35–51

    CAS  Google Scholar 

  27. Aaranjo P (2000) Trends Analyt Chem 19:524–529. doi:10.1016/S0165-9936(00)00035-2

    Article  Google Scholar 

  28. Gennaro MC, Marengo E, Gianotti V, Angioni S (2002) J Chromatogr A 945:287–292. doi:10.1016/S0021-9673(01)01487-X

    Article  CAS  Google Scholar 

  29. Chen J, Glancy K, Chen X, Alesandro M (2001) J Chromatogr A 917:63–73. doi:10.1016/S0021-9673(01)00670-7

    Article  CAS  Google Scholar 

  30. Ye C, Liu J, Ren F, Okafo N (2000) J Pharm Biomed Anal 23:169–174. doi:10.1016/S0731-7085(00)00335-6

    Article  Google Scholar 

  31. Ficcara R, Ficcara P, Tommasini S, Melardi S, Calabro ML, Furlanetto S et al (2000) J Pharm Biomed Anal 23:169–174. doi:10.1016/S0731-7085(00)00266-1

    Article  Google Scholar 

  32. Ficcara R, Calabro ML, Cutroneo P, Tommasini S, Melardi S, Semereen M et al (2002) J Pharm Biomed Anal 29:1097–1103. doi:10.1016/S0731-7085(02)00151-6

    Article  Google Scholar 

  33. Ragonese R, Mulholand M, Kalman J (2000) J Chromatogr A 870:45–51. doi:10.1016/S0021-9673(99)00972-3

    Article  CAS  Google Scholar 

  34. Fabre H (1996) J Pharm Biomed Anal 14:1125–1132. doi:10.1016/S0731-7085(96)01770-0

    Article  CAS  Google Scholar 

  35. Ferreiros N, Iriarte G, Alonso RM, Jimenez RM (2007) Talanta 73:748–756. doi:10.1016/j.talanta.2007.04.062

    Article  CAS  Google Scholar 

  36. Boillet D, Poole CF (1998) Anal Commun 35:253–256. doi:10.1039/a803247e

    Article  Google Scholar 

  37. Brereton RG (2003) In: Chemometrics, data analysis for the laboratory and chemical plant. Wiley, Chichester

Download references

Acknowledgments

This work has been supported by the Ministry of Science of Serbia, Grant 142062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dusanka M. Milojković-Opsenica.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrić, F.L., Trifković, J.Đ., Tešić, Ž.L. et al. An Approximate Linear Solvation Energy Relationships Model Based on Snyder’s Selectivity Parameters. Chromatographic Behavior of Some 1-Aralkyl-4-Arylpiperazines. Chroma 68, 453–458 (2008). https://doi.org/10.1365/s10337-008-0711-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0711-6

Keywords

Navigation