Skip to main content
Log in

A Sensitive LC Method with Fluorescence Detector for the Determination of Rhodamine 123 in Cell Lysate

  • Full Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Rhodamine 123 has been frequently used to evaluate the functional activity of P-glycoprotein, assess the related drug interactions, analyze mitochondrial distribution and function, sort functionally distinct cell subpopulations and measure mitochondrial or cellular membrane potential. We developed a sensitive and rapid liquid chromatographic method with fluorescence detection after simple sample preparation procedure for the determination of Rhodamine 123 in P-glycoprotein efflux studies. The mobile phase consisted of methanol and 15 mM dibasic sodium phosphate buffer (pH 6.0) (80:20,v/v), delivered at a rate of 1.0 mL min−1. 15 μL of the samples were injected into a reversed-phase C18 column with a fixed excitation wavelength at 505 nm and altered emission wavelengths. The whole LC analysis was accomplished within 6 min. The established linearity range from 1 to 100 ng mL−1, with the inter-day and intra-day RSD below 7.57 and 4.89% at concentrations of 4.4, 44 and 88 ng mL−1. All the calibration standards and quality controls were prepared in cell lysate and were stable for three freeze-thaw cycles, for 12 h at 4 °C and for 6 h at room temperature. This rapid LC method has been applied to the quantification of Rhodamine 123 in cell lysate obtained from P-glycoprotein efflux study conducted in rat brain capillary endothelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nare B, Prichard RK, Georges E (1994) Mol Pharmacol 45:1145–1152

    CAS  Google Scholar 

  2. Hong H, Lu Y, Ji Z-N, Liu G-Q (2006) J Neurochem 98:1465–1473

    Article  CAS  Google Scholar 

  3. Ando H, Nishio Y, Ito K, Nakao A, Wang L, Zhao YL, Kitaichi K, Takagi K, Hasegawa T (2001) Agents Chemother 45:3462–3467

    Article  CAS  Google Scholar 

  4. Pavek P, Staud F, Fendrich Z, Sklenarova H, Libra A, Novotna M, Kopecky M, Nobilis M, Semecky V (2003) J Pharmacol Exp Ther 305(3):1239–1250

    Article  CAS  Google Scholar 

  5. Yumoto R, Murakami T, Nakamoto Y, Hasegawa R, Nagai J, Takano M (1999) J Pharmacol Exp Ther 289(1):149–155

    CAS  Google Scholar 

  6. Annaert PP, Brouwer KLR (2005) Drug Metab Dispos 33:388–394

    Article  CAS  Google Scholar 

  7. Yumoto R, Murakami T, Sanemasa M, Nasu R, Nagai J, Takano M (2001) Drug Metab Dispos 29(2):145–151

    CAS  Google Scholar 

  8. Johnson LV, Walsh ML, Chen LB (1980) Proc Natl Acad Sci 77:990–994

    Article  CAS  Google Scholar 

  9. Kunz-Schughart LA, Habbersett RC, Freyer JP (2001) Cell Bio Int 25(9):919–930

    Article  CAS  Google Scholar 

  10. Wu YM, Xia XY, Pan LJ, Shao Y, Jin BF, Huang YF, Wang XL (2006) Zhonghua Nan Ke Xue 12(9):803–806

    CAS  Google Scholar 

  11. Camins A, Sureda FX, Gabriel C, Pallàs M, Escubedo E (1997) Brain Research 777:69–74

    Article  CAS  Google Scholar 

  12. Lu Q, Qiu TQ, Yang H (2006) J Guangdong Coll Pharm 22(2):179–184

    CAS  Google Scholar 

  13. Kim M, Cooper DD, Hayes SF, Spangrude GJ (1998) Blood 91(11):4106–4117

    CAS  Google Scholar 

  14. Zhou Y, Jia XS (2005) China J Mod Med 15(13):1930–1933

    Google Scholar 

  15. Brouty-Boyé D, Kolonias D, Jing Wu C, Savaraj N, Lampidis TJ (1995) Cancer Res 55(8):1633–1638

    Google Scholar 

  16. Hämmerle SP, Rothen-Rutishauser B, Krämer SD, Günthert M, Wunderli-Allenspach H (2000) Eur J Pharm Sci 12(1):69–77

    Article  Google Scholar 

  17. Sarver JG, Klis WA, Byers JP, Paul W (2002) J Biomol Screen 7(1):29–34

    CAS  Google Scholar 

  18. Wu YL, Zhu HJ, Zheng L, Liu GQ (2003) J China Pharm Univ 34(4):352–355

    CAS  Google Scholar 

  19. Bao JF, Liu GQ, Xu QY (2004) Chinese Pharm Bull 20(11):1265–1268

    CAS  Google Scholar 

  20. Storch CH, Theile D, Lindenmaier H, Haefeli WE, Weiss J (2007) Biochem Pharmacol 73(10):1573–1581

    Article  CAS  Google Scholar 

  21. Márián T, Balkay L, Trón L, Krasznai ZT, Szabó-Péli J, Krasznai Z (2005) Eur J Pharm Sci 24(5):495–501

    Article  Google Scholar 

  22. Darzynkiewicz Z, Staiano-Coico L, Myron R (1981) PNAS 78:2383–2387

    Article  CAS  Google Scholar 

  23. Wu YL, Ma BL, Zhu HJ, Liu GQ (2006) Chin J Clin Pharmacol Ther 11(1):45–50

    Google Scholar 

  24. Zhou Y, Jia XS (2005) Acta Anatomica Sinica 36(6):621–624

    Google Scholar 

  25. Iqbal T, Kinjo M, Dowling TC (2005) J Chromatogr B 814:259–262

    Article  CAS  Google Scholar 

  26. Song JP (2006) J Cent South Univ (Mde Sci) 31(4):610–612

    CAS  Google Scholar 

  27. Xie Y, Ye LY, Zhang XB, Cui W, Lou JN, Nagai T et al (2005) J Controlled Release 105(1–2):106–119

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunqiu Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Z., Lu, Y., Ke, W. et al. A Sensitive LC Method with Fluorescence Detector for the Determination of Rhodamine 123 in Cell Lysate. Chroma 68, 111–116 (2008). https://doi.org/10.1365/s10337-008-0654-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0654-y

Keywords

Navigation