Skip to main content
Log in

Measuring Peak Capacity of Reversed-Phase Columns for Small Molecule Compounds Under Gradient Elution

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The conventional approach to the measurement of peak capacity of reserved-phase columns under gradient elution assumes that all peaks have constant peak width, but this assumption can lead to inaccurate measurement of peak capacity. An integration approach employing a series of alkylphenones as model compounds was employed to more accurately measure the peak capacity for small molecule compounds under gradient elution. The base peak width of alkylphenones was plotted against retention time and a peak width function over retention time was established by polynomial regression. The peak capacity was then calculated by integrating the inverse of the peak width function over a gradient window. Compared to the conventional method, the integration method is not based on the assumption of equal peak width, thus providing a more accurate measurement of the peak capacity of reserved-phase columns, especially shorter ones packed with sub-2 μm particles under gradient elution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Snyder LR, Dolan JW (1998) In: Brown PR, Grushka E (eds) Advances in chromatography, Marcel Dekker, New York, 38:115–187

    Google Scholar 

  2. Okafo GN, Roberts JK (2003) In: Lee DC, Webb M (eds) Pharmaceutical analysis, Blackwell, Oxford, 31–48

    Google Scholar 

  3. Giddings JC (1967) Anal Chem 39:1027–1028 doi:10.1021/ac60252a025

    Article  CAS  Google Scholar 

  4. Grushka E (1970) Anal Chem 42:1142–1147 doi:10.1021/ac60293a001

    Article  CAS  Google Scholar 

  5. David JM, Giddings JC (1983) Anal Chem 55:418–424 doi:10.1021/ac00254a003

    Article  Google Scholar 

  6. Giddings JC (1991) Unified Separation Science. Wiley, New York, 105–106

    Google Scholar 

  7. Dolan JW, Snyder LR, Djordjevic NM, Hill DW, Waeghe TJJ (1999) Chromatogr A 857:1–20 Medline doi:10 1016/S0021-9673(99)00765-7

    Article  CAS  Google Scholar 

  8. Lan K, Jorgenson JW (1999) Anal Chem 71:709–714 Medline doi:10.1021/ac980702v

    Article  CAS  Google Scholar 

  9. Minakuchi H, Ishizuka N, Nakanishi K, Soga N, Tanaka NJ (1998) Chromatogr A 828:83–90 doi:10.1016/S0021-9673(98)00605-0

    Article  CAS  Google Scholar 

  10. Cheng Y, Lu Z, Neue U (2001) Rapid Commun Mass Spectrom 15:141–151 Medline doi:10.1002/1097-0231(20010130)15:2 ≤ 141::AID-RCM201 ≥ 3.0.CO;2-I

    Article  CAS  Google Scholar 

  11. McCalley DVJ (2004) Chromatogr A 1038:77–84 Medline doi:10.1016/j.chroma.2004.03.038

    Article  CAS  Google Scholar 

  12. Gilar M, Daly AE, Kele M, Neue UD, Gebler JCJ (2004) Chromatogr A 1061:183–192 Medline doi:10.1016/j.chroma.2004.10.092

    Article  CAS  Google Scholar 

  13. Wren SACJ (2005) Pharm Biomed Anal 38:337–343 Medline doi:10.1016/j.jpba.2004.12.028

    Article  CAS  Google Scholar 

  14. Shen Y, Zhang R, Moore R, Kim J, Metz TO, Hixson KK, Zhao R, Livesay EA, Udseth HR, Smith RD (2005) Anal Chem 77:3090–3100 Medline doi:10.1021/ac0483062

    Article  CAS  Google Scholar 

  15. Wang X, Barber WE, Carr PWJ (2006) Chromatogr A 1107:139–151 Medline doi:10.1016/j.chroma.2005.12.050

    Article  CAS  Google Scholar 

  16. Liu H, Finch JW, Lavallee MJ, Collamati RA, Benevides CC, Geber JCJ (2007) Chromatogr A 1147:30–36 Medline doi:10.1016/j.chroma.2007.02.016

    Article  CAS  Google Scholar 

  17. Medina JC, Wu N, Lee ML (2001) Anal Chem 73:1301–1306 Medline doi:10.1021/ac001031f

    Article  CAS  Google Scholar 

  18. Shen Y, Lee ML (1998) Anal Chem 70:3853–3856 doi:10.1021/ac9802426

    Article  CAS  Google Scholar 

  19. Neue UD (2005) J Chromatogr A 1079:153–161 Medline doi:10.1016/j.chroma.2005.03.008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank ChemPharm Management at Johnson & Johnson Pharmaceutical Research and Development for providing financial support to Srinivasan Sriram through a co-op program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Srinivasan, S., Gaiki, S. et al. Measuring Peak Capacity of Reversed-Phase Columns for Small Molecule Compounds Under Gradient Elution. Chroma 68, 19–25 (2008). https://doi.org/10.1365/s10337-008-0636-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-008-0636-0

Keywords

Navigation