Skip to main content
Log in

Automation of pH Optimization Experiments During LC Development

  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The selection of an optimal mobile phase pH under solvent gradient conditions is experimentally challenging. Although quaternary pumps are widely available, they are often used in binary mode to run simple solvent gradients with one pH-adjusted buffer at a time. A more effective use of quaternary pumps is to deliver two different aqueous buffer components (A and B) in a constant proportion to simulate a single, premixed buffer component, while simultaneously producing a solvent gradient by increasing the organic solvent component (S). This approach largely automates the pH optimization experiments. A more detailed investigation of pH effects becomes possible with less time and effort. Once a suitable pH has been identified, the same separation can be reproduced by a simpler binary gradient method which is more suitable for routine work. This study demonstrates the feasibility of this approach both theoretically and through actual examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Horváth C, Melander W, Molnár I (1977) Anal Chem 49: 142–154

    Article  Google Scholar 

  • Otto M, Wegscheider W (1983) J Liq Chromatogr 6: 685–704

    CAS  Google Scholar 

  • Kiel JS, Abramson RK, Morgan SL, Voris JV (1983) J Liq Chromatogr 6: 2761–2773

    CAS  Google Scholar 

  • Rosés M, Bosch E (2002) J Chromatogr A 982: 1–30

    Article  Google Scholar 

  • Subirats X, Bosch E, Rosés M (2004) J Chromatogr A 1059: 33–42

    Article  CAS  Google Scholar 

  • Molnar I (2002) J Chromatogr A 965: 175–194

    Article  CAS  Google Scholar 

  • Haber P, Baczek T, Kaloszan R, Snyder LR, Dolan JW, Wehr CT (2000) J Chromatogr Sci 38: 386–392

    CAS  Google Scholar 

  • Goldberg AP, Nowakowska E, Antle PE, Snyder LR (1984) J Chromatogr 316: 241–260

    Article  CAS  Google Scholar 

  • Kiel JS, Morgan SL, Abramson RK (1985) J Chromatogr 320: 313–323

    Article  CAS  Google Scholar 

  • Kaliszan R, Wiczling P, Markuszewski MJ (2004) Anal Chem 76: 749–760

    Article  CAS  Google Scholar 

  • Bartha A, Vigh G (1989) J Chromatogr 485: 383–401

    Article  CAS  Google Scholar 

  • Bilke HW, Molnar I, Gernet C (1996) J Chromatogr A 729:189–195

    Article  CAS  Google Scholar 

  • Espinosa S, Bosch E, Rosés M, Valkó K (2002) J Chromatogr A 954: 77–87

    Article  CAS  Google Scholar 

  • Hewitt EF, Lukulay P, Galushko S (2006) J Chromatogr A 1107:79–87

    Article  CAS  Google Scholar 

  • Snyder LR, Kirkland JJ, Glajch JL (1997) Practical HPLC Method Development, 2nd ed., Wiley, New York, p. 300

  • Snyder LR, Kirkland JJ, Glajch JL (1997) Practical HPLC Method Development, 2nd ed., Wiley, New York, pp. 311, 701–702

  • Snyder LR, Kirkland JJ, Glajch JL (1997) Practical HPLC Method Development, 2nd ed., Wiley, New York, p. 473

  • Budavari S, O'Neil MJ, Smith A, Heckelman PE (1989) The Merck Index, 11th ed., Merck & Co., Inc., Rahway, NJ, pp.49 & 4159.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Loeser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loeser, E., Babiak, S., Zhu, P. et al. Automation of pH Optimization Experiments During LC Development. Chroma 63, 345–351 (2006). https://doi.org/10.1365/s10337-006-0759-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-006-0759-0

Keywords

Navigation