Simple Liquid Chromatographic Determination of Minocycline in Brain and Plasma


A new high-performance liquid chromatography assay was developed for the determination of minocycline in plasma and brain. A solid–liquid extraction procedure was coupled with a reversed-phase HPLC system. The system requires a mobile phase consisting of acetonitrile:water:perchloric acid (26:74:0.25, v/v/v) adjusted to pH 2.5 with 5 M sodium hydroxide for elution through a RP8 column (250 × 3.0 mm, i.d.) with UV detection set at 350 nm. The method proved to be accurate, precise (RSD < 20%) and linear between 0.15–20 μg mL−1 in plasma and 1–20 μg mg−1 in brain. The method was successfully applied to a blood-brain barrier minocycline transport study.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Blum D, Chtarto A, Tenenbaum L, Brotchi J, Levivier M (2004) Neurobiol Dis 17:359–366

    Article  CAS  Google Scholar 

  2. 2.

    Yong VW, Wells J, Giuliani F, Casha S, Power C, Metz LM (2004) Lancet Neurol 3:744–751

    Article  Google Scholar 

  3. 3.

    Lin S, Zhang Y, Dodel R, Farlow MR, Paul SM, Du Y (2001) Neurosci Lett 315:61–64

    Article  CAS  Google Scholar 

  4. 4.

    Du Y, Ma Z, Lin S, Dodel RC, Gao F, Bales KR, Triarhou LC, Chernet E, Perry KW, Nelson DL, Luecke S, Phebus LA, Bymaster FP, Paul SM (2001) Proc Natl Acad Sci USA 98:14669–14674

    Article  CAS  Google Scholar 

  5. 5.

    Sanchez Mejia RO, Ona VO, Li M, Friedlander RM (2001) Neurosurgery 48:1393–1401

    Article  CAS  Google Scholar 

  6. 6.

    Zhu S, Stavrovskaya IG, Drozda M, Kim BY, Ona V, Li M, Sarang S, Liu AS, Hartley DM, Wu du C, Gullans S, Ferrante RJ, Przedborski S, Kristal BS, Friedlander RM (2002) Nature 417:74–78

    Article  CAS  Google Scholar 

  7. 7.

    Mascher HJ (1998) J Chromatogr A 812:339–342

    Article  CAS  Google Scholar 

  8. 8.

    Araujo MV, Ifa DR, Ribeiro W, Moraes ME, Moraes MO, de Nucci G (2001) J Chromatogr B Biomed Sci Appl 755:1–7

    Article  CAS  Google Scholar 

  9. 9.

    Birminham K, Vaughan LM, Strange C (1995) Ther Drug Monit 17:268–272

    CAS  Article  Google Scholar 

  10. 10.

    Podhorniak LV, Leake S, Schenck FJ (1999) J Food Prot 62:547–548

    CAS  Google Scholar 

  11. 11.

    Samanidou VF, Nikolaidou KI, Papadoyannis IN (2005) J Sep Sci 28:2247–2258

    Article  CAS  Google Scholar 

  12. 12.

    Tanase S, Tsuchiya H, Yao J, Ohmoto S, Takagi N, Yoshida S (1998) J Chromatogr B Biomed Sci Appl 706:279–285

    Article  Google Scholar 

  13. 13.

    Naline E, Sanceaume M, Toty L, Bakdach H, Pays M, Advenier C (1991) Br J Clin Pharmacol 32:402–404

    CAS  Google Scholar 

  14. 14.

    Colovic M, Caccia S (2003) J Chromatogr B Analyt Technol Biomed Life Sci 791:337–343

    CAS  Google Scholar 

  15. 15.

    Murakami K, Tateda K, Matsumoto T, Miyazaki S, Yamaguchi K (2000) J Antimicrob Chemother 46:629–632

    Article  CAS  Google Scholar 

  16. 16.

    Zawilla NH, Diana J, Hoogmartens J, Adams E (2006) J Pharm Biomed Anal 40:815–821

    Article  CAS  Google Scholar 

Download references


This work was supported by a grant from the AFM (Association Française contre les Myopathies).

Author information



Corresponding author

Correspondence to C. Fernandez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Milane, A., Fernandez, C., Bensimon, G. et al. Simple Liquid Chromatographic Determination of Minocycline in Brain and Plasma. Chroma 65, 277–281 (2007).

Download citation


  • Column liquid chromatography
  • Tetracycline antibiotics
  • Minocycline in blood and brain