Skip to main content
Log in

Effect of Pressurized Solvent Environments on the Alkyl Chain Order of Octadecylsilane Stationary Phases by Raman Spectroscopy

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The effect of pressure on solute retention in HPLC has been controversial, since direct evidence for structural changes in the stationary phase due to pressure is not readily available. In this report, the effect of pressurization in four solvent environments on the conformational order of one monomeric and one polymeric octadecylsilane stationary phase is investigated using Raman spectroscopy. Normalized changes in a Raman spectral indicator of conformational order after exposure to these pressurized solvent environments are compared to those observed by exposure to the same solvent at atmospheric pressure. Although solvation has a greater impact on conformational order than pressurization, measurable changes induced by pressure are observed for both stationary phases. Small effects (<2–3% change in order) due to pressure are noted for the monomeric stationary phase in all solvents; the magnitudes of these effects generally correlate with isothermal compressibility of the solvent. Slightly larger pressure effects are observed for the polymeric stationary phase (4–7% change in order), with pressurization in polar solvents inducing greater changes in order than in nonpolar solvents. Collectively, these results are interpreted in terms of differences in the local surface bonding density and interchain spacing of the alkylsilanes of these two stationary phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Martin M, Blu G, Guiochon G (1973) J Chromatogr Sci 11:641–654

    CAS  Google Scholar 

  2. Martin M, Eon C, Guiochon G (1974) J Chromatogr 99:357–376

    Article  CAS  Google Scholar 

  3. Martire DE, Boehm RE (1983) J Phys Chem 87:1045–1062

    Article  CAS  Google Scholar 

  4. McGuffin VL, Evans CE (1991) J Microcol Sep 3:513–520

    Article  CAS  Google Scholar 

  5. Guiochon G, Sepaniak MJ (1992) J Chromatogr 606:248–250

    Article  CAS  Google Scholar 

  6. Chen SH, Ho CT, Hsiao KY, Chen JM (2000) J Chromatogr A 891:207–215

    Article  CAS  Google Scholar 

  7. Liu X, Zhou D, Szabelski P, Guiochon G (2003) Anal Chem 75:3999–4009

    Article  CAS  Google Scholar 

  8. Liu X, Szabelski P, Kaczmarski K, Zhou D, Guiochon G (2003) J Chromatogr A 988:205–218

    Article  CAS  Google Scholar 

  9. Tanaka N, Yoshimura T, Araki M (1987) J Chromatogr 406:247–256

    Article  CAS  Google Scholar 

  10. Brindle R, Pursch M, Albert K (1996) Solid State Nucl Mag Res 6:251–266

    Article  CAS  Google Scholar 

  11. Jinno K (1989) J Chromatogr Sci 27:729–734

    CAS  Google Scholar 

  12. Sentell KB (1993) J Chromatogr A 656:231–263

    Article  CAS  Google Scholar 

  13. Pursch M, Sander L, Albert K (1999) Anal Chem 71:733A–741A

    CAS  Google Scholar 

  14. Albert K (2003) J Sep Sci 26:215–224

    Article  CAS  Google Scholar 

  15. Sander LC, Callis JB, Field LR (1983) Anal Chem 55:1068–1075

    CAS  Google Scholar 

  16. Jinno K, Wu J, Ichikawa M, Takata I (1993) Chromatographia 37:627–634

    Article  CAS  Google Scholar 

  17. Singh S, Wegmann JAK, Muller K (2002) J Phys Chem B 106:878–888

    Article  CAS  Google Scholar 

  18. Neumann-Singh S, Villaneuva-Garibay J, Muller K (2004) J Phys Chem B 108:1906–1917

    Article  CAS  Google Scholar 

  19. Carr PW, Harris JM (1987) Anal Chem 59:2546–2550

    Article  CAS  Google Scholar 

  20. Wong AL, Hunnicut ML, Harris JM (1991) Anal Chem 63:1076–1081

    Article  CAS  Google Scholar 

  21. Ho M, Cai M, Pemberton JE (1997) Anal Chem 69:2613–2616

    Article  CAS  Google Scholar 

  22. Doyle CA, Vickers TJ, Mann CK, Dorsey JG (1997) J Chromatogr A 779:91–112

    Article  CAS  Google Scholar 

  23. Ho M, Pemberton JE (1998) Anal Chem 70:4915–4920

    Article  CAS  Google Scholar 

  24. Doyle CA, Vickers TJ, Mann CK, Dorsey JG (2000) J Chromatogr A 877:25–39

    Article  CAS  Google Scholar 

  25. Doyle CA, Vickers TJ, Mann CK, Dorsey JG (2000) J Chromatogr A 877:41–59

    Article  CAS  Google Scholar 

  26. Pemberton JE, Ho M, Orendorff CJ, Ducey MW (2001) J Chromatogr A 913:243–252

    Article  CAS  Google Scholar 

  27. Ducey MW, Orendorff CJ, Pemberton JE, Sander LC (2002) Anal Chem 74:5576–5584

    Article  CAS  Google Scholar 

  28. Ducey MW, Orendorff CJ, Pemberton JE, Sander LC (2002) Anal Chem 74:5585–5592

    Article  CAS  Google Scholar 

  29. Orendorff CJ, Ducey MW, Pemberton JE, Sander LC (2003) Anal Chem 75:3369–3375

    Article  CAS  Google Scholar 

  30. Orendorff CJ, Ducey MW, Pemberton JE, Sander LC (2003) Anal Chem 75:3360–3368

    Article  CAS  Google Scholar 

  31. Orendorff CJ, Pemberton JE (2005) Anal Bioanal Chem 382:691–697

    Article  CAS  Google Scholar 

  32. Orendorff CJ, Ducey MW, Pemberton JE (2002) J Phys Chem A 106:6991–6998

    Article  CAS  Google Scholar 

  33. Snyder RG, Schachtschneider JH (1963) Spectrochim Acta 19:117–168

    Article  Google Scholar 

  34. Spiker RC, Levin IW (1975) Biochim Biophys Acta 338:361–373

    Google Scholar 

  35. Snyder RG, Hsu SL, Krimm S (1978) Spectrochim Acta 34A:395–406

    CAS  Google Scholar 

  36. Snyder RG, Scherer JR, Gaber BR (1980) Biochim Biophys Acta 601:47–53

    Article  CAS  Google Scholar 

  37. Wallach DFH, Varma SP, Fookson J (1979) Biochim Biophys Acta 559:153–208

    CAS  Google Scholar 

  38. Gaber BP, Peticolas WL (1977) Biochim Biophys Acta 465:260–274

    Article  CAS  Google Scholar 

  39. Lasson K, Rand RP (1973) Biochim Biophys Acta 326:245–255

    Google Scholar 

  40. Snyder RG, Scherer JR (1979) J Chem Phys 71:3221–3228

    Article  CAS  Google Scholar 

  41. Snyder RG, Strauss HL, Elliger CA (1982) J Phys Chem 86:5145–5150

    Article  CAS  Google Scholar 

  42. Wong PTT, Siminovitch DJ, Mantsch HH (1988) Biochim Biophys Acta 947:139–171

    CAS  Google Scholar 

  43. Piccoli RF (1998) PhD Dissertation, Department of Chemistry, University of Arizona

  44. Kamlet MJ, Abboud JM, Abraham MH, Taft RW (1983) J Org Chem 48:2877–2887

    Article  CAS  Google Scholar 

  45. Kamlet MJ, Doherty R, Taft RW, Abraham MH (1983) J Am Chem Soc 105:6741–6743

    Article  CAS  Google Scholar 

  46. Kamlet MJ, Carr PW, Taft RW, Abraham MH (1981) J Am Chem Soc 103:6062–6066

    Article  CAS  Google Scholar 

  47. Taft RW, Abboud JLM, Kamlet MJ, Abraham MH (1985) J Solution Chem 14:153–186

    Article  CAS  Google Scholar 

  48. Walter TH, Iraneta P, Capparella M (2005) J Chromatogr A 1075:177–183

    Article  CAS  Google Scholar 

  49. Przybyciel M, Majors RE (2002) LC-GC 20:516–523

    CAS  Google Scholar 

  50. Bidlingmeyer BA, Broske AD (2004) J Chromatogr Sci 42:100–106

    CAS  Google Scholar 

  51. Yonker CR, Zwier TA, Burke MF (1982) J.Chromatogr 241:257–268

    Article  CAS  Google Scholar 

  52. Tijssen R, Schoenmakers PJ, Boehmer MR, Koopal LK, Billiet HAH (1993) J Chromatogr 656:135–196

    Article  CAS  Google Scholar 

  53. Boenig HV (1966) Polyolefins: structure and properties. Elsevier, Amsterdam

    Google Scholar 

  54. Keller A (1957) Philos Mag 2:1171–1175

    CAS  Google Scholar 

  55. Niegisch WD, Swan PR (1960) J Appl Phys 31:1906–1910

    Article  CAS  Google Scholar 

  56. Marcus Y, Hefter GT (1997) J Molec Liq 73, 74:61–74

    Article  Google Scholar 

  57. Cibulka I, Takagi T (1999) J Chem Eng Data 44:411–429

    Article  CAS  Google Scholar 

  58. Cibulka I, Takagi T, Ruzicka K (2001) J Chem Eng Data 46:2–28

    Article  CAS  Google Scholar 

  59. Cibulka I, Takagi T (2002) J Chem Eng Data 47:1037–1070

    Article  CAS  Google Scholar 

  60. Lide DR (ed) (1995) CRC handbook of chemistry and physics. CRC Press, Boca Raton

  61. Sangster J (2005) Sangster Research Laboratories, Montreal

  62. Lochmuller CH, Wilder DR (1979) J Chromatogr Sci 17:574–579

    Google Scholar 

  63. Pursch MA, Sander LC, Albert K (1996) Anal Chem 68:4107–4113

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support of this research by the Department of Energy (DE-FG03-95ER14546). The authors also express appreciation to Professor Michael F. Burke and International Sorbent Technology for providing the stationary phase materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Pemberton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, Z., Orendorff, C.J. & Pemberton, J.E. Effect of Pressurized Solvent Environments on the Alkyl Chain Order of Octadecylsilane Stationary Phases by Raman Spectroscopy. Chroma 64, 139–146 (2006). https://doi.org/10.1365/s10337-006-0005-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-006-0005-9

Keywords

Navigation