Classics Revisited: Éléments de Géométrie Algébrique

  • Ulrich Görtz
Classics Revisited


About 50 years ago, Éléments de Géométrie Algébrique (EGA) by A. Grothendieck and J. Dieudonné appeared, an encyclopedic work on the foundations of Grothendieck’s algebraic geometry. We sketch some of the most important concepts developed there, comparing it to the classical language, and mention a few results in algebraic and arithmetic geometry which have since been proved using the new framework.


Éléments de Géométrie Algébrique Algebraic Geometry Schemes 


  1. 1.
    Aholt, C., Sturmfels, B., Thomas, R.: A Hilbert scheme in computer vision. Can. J. Math. 65, 961–988 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arbarello, E., Cornalba, M., Griffiths, P.: Geometry of Algebraic Curves, Vol. II. Grundl. Math. Wiss., vol. 268. Springer, Berlin (2011) CrossRefzbMATHGoogle Scholar
  3. 3.
    Artin, M.: Versal deformations and algebraic stacks. Invent. Math. 27, 165–189 (1974) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Artin, M., Jackson, A., Mumford, D., Tate, J.: Alexandre Grothendieck 1928–2014, Part 1. Not. Am. Math. Soc. 63(3), 242–255 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Artin, M., Jackson, A., Mumford, D., Tate, J.: Alexandre Grothendieck 1928–2014, Part 2. Not. Am. Math. Soc. 63(4), 401–413 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barbieri Viale, L.: Alexander Grothendieck: enthusiasm and creativity. In: Bartocci, C., Betti, R., Guerraggio, A., Lucchetti, R. (eds.) Mathematical Lives. Springer, Berlin (2011) Google Scholar
  7. 7.
    Beauville, A.: Surfaces algébriques complexes. Astérisque, vol. 54 (1978) zbMATHGoogle Scholar
  8. 8.
    Blass, P.: The influence of Oscar Zariski on algebraic geometry. In: Pragacz, P. (ed.) Contributions to Algebraic Geometry, Impanga Lecture Notes. EMS Series of Congress Reports (2012) Google Scholar
  9. 9.
    Blass, P., Blass, J., Alexandre: Grothendieck’s EGA V, Translation and Editing of his ‘prenotes’.
  10. 10.
    Cadman, C., Coskun, I., Jabbusch, K., Joyce, M., Kovács, S., Lieblich, M., Sato, F., Szczesny, M., Zhang, J.: A first glimpse at the minimal model program. In: Snowbird Lectures in Algebraic Geometry. Contem. Math., vol. 388, pp. 17–42 (2005) CrossRefGoogle Scholar
  11. 11.
    Carlini, E., Catalisano, M.V., Oneto, A.: Waring loci and Strassen conjecture. Adv. Math. 314, 630–662 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cartier, P.: A mad day’s work: from Grothendieck to Connes and Kontsevich. The evolution of concepts of space and symmetry. Bull. Am. Math. Soc. (N.S.) 38(4), 389–408 (2001) CrossRefzbMATHGoogle Scholar
  13. 13.
    Chevalley, C.: Les schémas. Séminaire Henri Cartan 8(5), 1–6 (1955–1956) Google Scholar
  14. 14.
    Cornell, G., Silverman, J.: Arithmetic Geometry. Springer, Berlin (1986) CrossRefzbMATHGoogle Scholar
  15. 15.
    Cornell, G., Silverman, J., Stevens, G.: Modular Forms and Fermat’s Last Theorem. Springer, Berlin (1997) CrossRefzbMATHGoogle Scholar
  16. 16.
    Debarre, O.: Higher-Dimensional Algebraic Geometry. Universitext. Springer, Berlin (2001) CrossRefzbMATHGoogle Scholar
  17. 17.
    Deligne, P.: Formes modulaires et représentations \(\ell \)-adiques. In: Sém. Bourbaki 355. Lecture Notes in Math., vol. 179. Springer, Berlin (1969) Google Scholar
  18. 18.
    Deligne, P.: La conjecture de Weil I. Publ. Math. IHÉS 43, 273–308 (1974) MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Deligne, P.: La conjecture de Weil: II. Publ. Math. IHÉS 52, 137–252 (1980) MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Deligne, P.: Quelques idées maîtresses de l’œuvre de A. Grothendieck. In: Matériaux Pour l’histoire des Mathématiques Au XXe Siècle: Actes du Colloque à la Mémoire de Jean Dieudonné, Nice, 1996, SMF (1998) Google Scholar
  21. 21.
    Dieudonné, J.: The historical development of algebraic geometry. Am. Math. Mon. 79(8), 827–866 (1972) MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Dieudonné, J.: History of Algebraic Geometry. Chapman & Hall/CRC Press, London/Boca Raton (1985) zbMATHGoogle Scholar
  23. 23.
    Dieudonné, J.: The Historical Development of Algebraic Geometry, Transscript of a talk at the Univ. of Wisconsin-Milwaukee, March 1972, prepared by, Schwiebert, R., 2018. arXiv:1803.00163
  24. 24.
    Edidin, D.: What is … a stack? Not. Am. Math. Soc. 50(4), 458–459 (2003) Google Scholar
  25. 25.
    Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73(3), 349–366 (1983) MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Fantechi, B.: Stacks for everybody. In: Casacuberta, C., Miró-Roig, R., Verdera, J., Xambó-Descamps, S. (eds.) European Congress of Math.. Progress in Math., vol. 201. Birkhäuser, Basel (2001) Google Scholar
  27. 27.
    Freitag, E., Kiehl, R.: Etale Cohomology and the Weil Conjectures. Erg. Math. U. Ihrer Grenzgeb. 3. Folge, vol. 13. Springer, Berlin (1988) CrossRefzbMATHGoogle Scholar
  28. 28.
    Görtz, U., Wedhorn, T.: Algebraic Geometry I. Schemes, with Examples and Exercises. Vieweg+Teubner, Wiesbaden (2010) zbMATHGoogle Scholar
  29. 29.
    Grothendieck, A.: Sur quelques points d’algèbre homologique. Tohoku Math. J. (2) 9, 119–221 (1957) MathSciNetzbMATHGoogle Scholar
  30. 30.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Math., vol. 52. Springer, Berlin (1977) zbMATHGoogle Scholar
  31. 31.
    Hartshorne, R.: Deformation Theory. Graduate Texts in Math., vol. 257. Springer, Berlin (2010) zbMATHGoogle Scholar
  32. 32.
    Illusie, L., Raynaud, M.: Grothendieck and algebraic geometry. Asia Pac. Math. Newsl. 5(1), 1–5 (2015) MathSciNetzbMATHGoogle Scholar
  33. 33.
    Jackson, A.: Comme Appelé du Néant—as if summoned from the void: the life of Alexandre Grothendieck, Part I. Not. Am. Math. Soc. 51(9), 1038–1056 (2004). zbMATHGoogle Scholar
  34. 34.
    Jackson, A.: Comme Appelé du Néant—as if summoned from the void: the life of Alexandre Grothendieck, Part II. Not. Am. Math. Soc. 51(10), 1196–1212 (2004) zbMATHGoogle Scholar
  35. 35.
    Jacobson, N.: A topology for the set of primitive ideals in an arbitrary ring. Proc. Natl. Acad. Sci. USA 31, 333–338 (1945) MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Katz, N., Mazur, B.: Arithmetic Moduli of Elliptic Curves. Annals of Math. Studies, vol. 108. Princeton University Press, Princeton (1985) CrossRefzbMATHGoogle Scholar
  37. 37.
    Kiehl, R., Weissauer, R.: Weil conjectures, perverse sheaves and \(\ell \)-adic Fourier transform. In: Erg. Math. u. Ihrer Grenzgeb., 3. Folge, vol. 42. Springer, Berlin (2001) Google Scholar
  38. 38.
    Lieblich, M., Van Meter, L.: Two hilbert schemes in computer vision (2017). arXiv:1707.09332. Preprint
  39. 39.
    Lorenzini, D.: An Invitation to Arithmetic Geometry. Grad. Studies in Math., vol. 9. AMS, Providence (1996) zbMATHGoogle Scholar
  40. 40.
    MacLane, S.: Categories for the Working Mathematician. Graduate Texts in Math., vol. 5. Springer, New York (1978) CrossRefzbMATHGoogle Scholar
  41. 41.
    MacLarty, C.: How Grothendieck simplified algebraic geometry. Not. Am. Math. Soc. 63(3), 256–265 (2016) MathSciNetCrossRefGoogle Scholar
  42. 42.
    McLarty, C.: The rising sea: Grothendieck on simplicity and generality. In: Gray, J.J., Parshall, K.H. (eds.) Episodes in the History of Modern Algebra (1800–1950). AMS, Providence (2007) Google Scholar
  43. 43.
    Mori, S.: Projective manifolds with ample tangent bundle. Ann. Math. 110, 593–606 (1979) MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Mumford, D.: The Red Book of Varieties and Schemes. Lecture Notes in Math., vol. 1358. Springer, Berlin (1988) zbMATHGoogle Scholar
  45. 45.
    Mumford, D.: Can one explain schemes to biologists (2014).
  46. 46.
    Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, 3rd enl. edn. Springer, Berlin (1994) CrossRefzbMATHGoogle Scholar
  47. 47.
    Olsson, M.: Algebraic Spaces and Stacks. Colloquium Publ., vol. 62. AMS, Providence (2016) zbMATHGoogle Scholar
  48. 48.
    Oort, F.: The Weil conjectures. Nieuw Arch. Wiskd. 5/15(3), 211–219 (2014) MathSciNetzbMATHGoogle Scholar
  49. 49.
    Overflow, M.: The importance of EGA and SGA for “students of today”.
  50. 50.
    Overflow, M.: Existence of fine moduli space for curves and elliptic curves.
  51. 51.
    Penner, R.: Moduli spaces and macromolecules. Bull. Am. Meteorol. Soc. 53, 217–268 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Raynaud, M.: André Weil and the foundations of algebraic geometry. Not. Am. Math. Soc. 46(8), 864–867 (1999) MathSciNetzbMATHGoogle Scholar
  53. 53.
    Schappacher, N.: A historical sketch of B.L. van der Waerden’s work on algebraic geometry 1926–1946. In: Gray, J., Parshall, K.H. (eds.) Episodes in the History of Modern Algebra (1800–1950), pp. 245–283. AMS/LMS, Providence/London (2007) Google Scholar
  54. 54.
    Scharlau, W.: Wer ist Alexander Grothendieck. In: Annual Report 2006 of the Mathematics Research Institute in Oberwolfach. Notices of the AMS, vol. 55, pp. 930–941 (2008). English translation: Who is, Grothendieck, Alexander Google Scholar
  55. 55.
    Scharlau, W.: Wer Ist Alexander Grothendieck, Teil 1: Anarchie, 3rd edn. (2011). Teil 3: Spiritualität, 2010 zbMATHGoogle Scholar
  56. 56.
    Schneps, L. (ed.): Alexandre Grothendieck: A Mathematical Portrait. International Press, Somerville (2014) zbMATHGoogle Scholar
  57. 57.
    Scholze, P.: \(p\)-adic geometry. Report for ICM Rio de Janeiro, 2018. Preprint
  58. 58.
    Serre, J.P.: Faisceaux algébriques cohérents. Ann. Math. (2) 61(2), 197–278 (1955) MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Silverman, J.: The Arithmetic of Elliptic Curves. Graduate Texts in Math., vol. 106. Springer, Berlin (1986) zbMATHGoogle Scholar
  60. 60.
    Silverman, J.: Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Math., vol. 151. Springer, Berlin (1994) zbMATHGoogle Scholar
  61. 61.
    The Stacks Project Authors, Stacks Project (2018).
  62. 62.
    van der Waerden, B.L.: Einführung in die algebraische Geometrie. In: Grundl. Math. Wiss., vol. 51. Springer, Berlin (1939) Google Scholar
  63. 63.
    Washington, L.: Elliptic Curves: Number Theory and Cryptography. CRC Press, Boca Raton (2008) CrossRefzbMATHGoogle Scholar
  64. 64.
    Wedhorn, T.: Manifolds, Sheaves, and Cohomology. Springer, Berlin (2016) CrossRefzbMATHGoogle Scholar
  65. 65.
    Weil, A.: Courbes Algébriques et Variétés Abéliennes. Hermann, Paris (1948) zbMATHGoogle Scholar
  66. 66.
    Wiles, A.: The Birch and Swinnerton-Dyer Conjecture, Official Problem Description. Clay Math. Inst.
  67. 67.
    Williamson, G.: Parity Sheaves and the Hecke category. Report for ICM Rio de Janeiro, 2018. Preprint arXiv:1801.00896
  68. 68.
    Zariski, O.: Algebraic geometry. The fundamental ideas of abstract algebraic geometry. In: Proc. ICM, Cambridge, 1950, vol. 2, pp. 77–89. AMS, Providence (1952). Google Scholar

Copyright information

© Deutsche Mathematiker-Vereinigung and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.University of Duisburg-Essen, Fakultät für MathematikEssenGermany

Personalised recommendations