Jahresbericht der Deutschen Mathematiker-Vereinigung

, Volume 118, Issue 3, pp 233–237 | Cite as

Diane Maclagan, Bernd Sturmfels: “Introduction to Tropical Geometry”

Graduate Studies in Mathematics, vol. 161, AMS, 2015, 363 pp.
Book Review


  1. 1.
    Baccelli, F.L., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, Chichester (1992) MATHGoogle Scholar
  2. 2.
    Bieri, R., Groves, J.R.J.: The geometry of the set of characters induced by valuations. J. Reine Angew. Math. 347, 168–195 (1984) MathSciNetMATHGoogle Scholar
  3. 3.
    Bogart, T., Jensen, A.N., Speyer, D., Sturmfels, B., Thomas, R.R.: Computing tropical varieties. J. Symb. Comput. 42(1–2), 54–73 (2007) MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 4th edn. Undergraduate Texts in Mathematics. Springer, Cham (2015) CrossRefMATHGoogle Scholar
  5. 5.
    Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties. Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Providence (2011) MATHGoogle Scholar
  6. 6.
    Einsiedler, M., Kapranov, M., Lind, D.: Non-Archimedean amoebas and tropical varieties. J. Reine Angew. Math. 601, 139–157 (2006) MathSciNetMATHGoogle Scholar
  7. 7.
    Gawrilow, E., Joswig, M.: Polymake: a framework for analyzing convex polytopes, polytopes—combinatorics and computation. In: DMV Sem., vol. 29, Oberwolfach 1997, pp. 43–73. Birkhäuser, Basel (2000). Software available at http://polymake.org Google Scholar
  8. 8.
    Jensen, A.N.: Gfan, a software system for Gröbner fans and tropical varieties, version 0.5. (2011). Available at http://home.imf.au.dk/jensen/software/gfan/gfan.html
  9. 9.
    Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147(1), 1–23 (1992) MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Mikhalkin, G.: Enumerative tropical algebraic geometry in \(\mathbb{R}^{2}\). J. Am. Math. Soc. 18(2), 313–377 (2005) MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Richter-Gebert, J., Sturmfels, B., Theobald, T.: First Steps in Tropical Geometry, Idempotent Mathematics and Mathematical Physics. Contemp. Math., vol. 377, pp. 289–317. Amer. Math. Soc., Providence (2005) CrossRefMATHGoogle Scholar
  12. 12.
    Speyer, D., Sturmfels, B.: The tropical Grassmannian. Adv. Geom. 4(3), 389–411 (2004) MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series, vol. 8. American Mathematical Society, Providence (1996) MATHGoogle Scholar
  14. 14.
    Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995) MATHGoogle Scholar

Copyright information

© Deutsche Mathematiker-Vereinigung and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institut für Mathematik, MA 6-2TU BerlinBerlinGermany

Personalised recommendations