Advertisement

Second Order Optimality Conditions and Their Role in PDE Control

  • Eduardo Casas
  • Fredi TröltzschEmail author
Survey Article

Abstract

If \(f: \mathbb{R}^{n} \to \mathbb{R}\) is twice continuously differentiable, f′(u)=0 and f″(u) is positive definite, then u is a local minimizer of f. This paper surveys the extension of this well known second order sufficient optimality condition to the case \(f: U \to \mathbb{R}\), where U is an infinite-dimensional linear normed space. The reader will be guided from the case of finite dimensions via a brief discussion of the calculus of variations and the optimal control of ordinary differential equations to the control of nonlinear partial differential equations, where U is a function space. In particular, the following questions will be addressed: Is the extension to infinite dimensions straightforward or will unexpected difficulties occur? How have second order sufficient optimality conditions to be modified, if simple inequality constraints are imposed on u? Why do we need second order conditions and how can they be applied? If they are important, are we able to check if they are fulfilled?

It turns out that infinite dimensions cause new difficulties that do not occur in finite dimensions. We will be faced with the surprising fact that the space, where f″(u) exists can be useless to ensure positive definiteness of the quadratic form vf″(u)v 2. In this context, the famous two-norm discrepancy, its consequences, and techniques for overcoming this difficulty are explained. To keep the presentation simple, the theory is developed for problems in function spaces with simple box constraints of the form αuβ. The theory of second order conditions in the control of partial differential equations is presented exemplarily for the nonlinear heat equation. Different types of critical cones are introduced, where the positivity of f″(u) must be required. Their form depends on whether a so-called Tikhonov regularization term is part of the functional f or not. In this context, the paper contains also new results that lead to quadratic growth conditions in the strong sense.

As a first application of second order sufficient conditions, the stability of optimal solutions with respect to perturbations of the data of the control problem is discussed. Second, their use in analyzing the discretization of control problems by finite elements is studied. A survey on further related topics, open questions, and relevant literature concludes the paper.

Keywords

Nonlinear optimization Infinite dimensional space Second order optimality condition Critical cone Optimal control of partial differential equations Stability analysis 

Mathematics Subject Classification

49-02 90-02 49K20 49K40 49M25 90C46 90C48 

References

  1. 1.
    Alt, W., Griesse, R., Metla, N., Rösch, A.: Lipschitz stability for elliptic optimal control problems with mixed control-state constraints. Optimization 59(5–6), 833–849 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Alt, W., Malanowski, K.: The Lagrange-Newton method for nonlinear optimal control problems. Comput. Optim. Appl. 2, 77–100 (1993) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Arada, N., Casas, E., Tröltzsch, F.: Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23, 201–229 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bayen, T., Bonnans, J.F., Silva, F.J.: Characterization of local quadratic growth for strong minima in the optimal control of semi-linear elliptic equations. Trans. Am. Math. Soc. 366(4), 2063–2087 (2014) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bonnans, F., Casas, E.: Une principe de Pontryagine pour le contrôle des systèmes semilinéaires elliptiques. J. Differ. Equ. 90, 288–303 (1991) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Bonnans, F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000) CrossRefzbMATHGoogle Scholar
  7. 7.
    Bonnans, J.F.: Second-order analysis for control constrained optimal control problems of semilinear elliptic systems. Appl. Math. Optim. 38(3), 303–325 (1998) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bonnans, J.F., Jaisson, P.: Optimal control of a parabolic equation with time-dependent state constraints. SIAM J. Control Optim. 48(7), 4550–4571 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Bonnans, J.F., Zidani, H.: Optimal control problems with partially polyhedric constraints. SIAM J. Control Optim. 37(6), 1726–1741 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Cartan, H.: Calcul Différentiel. Formes Différentielles. Hermann, Paris (1967) Google Scholar
  11. 11.
    Casas, E.: Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 4, 1309–1322 (1986) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Casas, E.: Necessary and sufficient optimality conditions for elliptic control problems with finitely many pointwise state constraints. ESAIM Control Optim. Calc. Var. 14, 575–589 (2007) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Casas, E.: Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems. Adv. Comput. Math. 26(1–3), 137–153 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Casas, E.: Second order analysis for bang-bang control problems of PDEs. SIAM J. Control Optim. 50(4), 2355–2372 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Casas, E., Chrysafinos, K.: A discontinuous Galerkin time-stepping scheme for the velocity tracking problem. SIAM J. Numer. Anal. 50(5), 2281–2306 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Casas, E., De los Reyes, J.C., Tröltzsch, F.: Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints. SIAM J. Optim. 19(2), 616–643 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Casas, E., Dhamo, V.: Optimality conditions for a class of optimal boundary control problems with quasilinear elliptic equations. Control Cybern. 40(2), 457–490 (2011) MathSciNetGoogle Scholar
  18. 18.
    Casas, E., Herzog, R., Wachsmuth, G.: Approximation of sparse controls in semilinear equations by piecewise linear functions. Numer. Math. 122(4), 645–669 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Casas, E., Herzog, R., Wachsmuth, G.: Optimality conditions and error analysis of semilinear elliptic control problems with L 1 cost functional. SIAM J. Optim. 22(3), 795–820 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Casas, E., Mateos, M.: Second order sufficient optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40, 1431–1454 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Casas, E., Mateos, M.: Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Comput. Optim. Appl. 39, 265–295 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Casas, E., Mateos, M., Raymond, J.-P.: Error estimates for the numerical approximation of a distributed control problem for the steady-state Navier-Stokes equations. SIAM J. Control Optim. 46(3), 952–982 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Casas, E., Mateos, M., Tröltzsch, F.: Error estimates for the numerical approximation of boundary semilinear elliptic control problems. Comput. Optim. Appl. 31, 193–220 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Casas, E., Ryll, C., Tröltzsch, F.: Second order and stability analysis for optimal sparse control of the FitzHugh-Nagumo equation (2014, submitted) Google Scholar
  25. 25.
    Casas, E., Ryll, C., Tröltzsch, F.: Sparse optimal control of the Schlögl and FitzHugh-Nagumo systems. Comput. Methods Appl. Math. 13, 415–442 (2014) Google Scholar
  26. 26.
    Casas, E., Tröltzsch, F.: Second-order necessary optimality conditions for some state-constrained control problems of semilinear elliptic equations. Appl. Math. Optim. 39, 211–227 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Casas, E., Tröltzsch, F.: Second order necessary and sufficient optimality conditions for optimization problems and applications to control theory. SIAM J. Optim. 13, 406–431 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Casas, E., Tröltzsch, F.: First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations. SIAM J. Control Optim. 48, 688–718 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Casas, E., Tröltzsch, F.: Recent advances in the analysis of pointwise state-constrained elliptic control problems. ESAIM Control Optim. Calc. Var. 16, 581–600 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Casas, E., Tröltzsch, F.: Second order analysis for optimal control problems: improving results expected from abstract theory. SIAM J. Optim. 22, 261–279 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Casas, E., Tröltzsch, F.: Second-order and stability analysis for state-constrained elliptic optimal control problems with sparse controls. SIAM J. Control Optim. 52, 1010–1033 (2014) CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Casas, E., Tröltzsch, F., Unger, A.: Second order sufficient optimality conditions for a nonlinear elliptic control problem. Z. Anal. Anwend. (ZAA) 15, 687–707 (1996) CrossRefzbMATHGoogle Scholar
  33. 33.
    Casas, E., Tröltzsch, F., Unger, A.: Second order sufficient optimality conditions for some state-constrained control problems of semilinear elliptic equations. SIAM J. Control Optim. 38(5), 1369–1391 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    De Los Reyes, J.C., Griesse, R.: State-constrained optimal control of the three-dimensional stationary Navier-Stokes equations. J. Math. Anal. Appl. 343(1), 257–272 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    De los Reyes, J.C., Merino, P., Rehberg, J., Tröltzsch, F.: Optimality conditions for state-constrained PDE control problems with time-dependent controls. Control Cybern. 37, 7–38 (2008) Google Scholar
  36. 36.
    Dontchev, A.L., Hager, W.W.: Lipschitz stability in nonlinear control and optimization. SIAM J. Control Optim. 31, 569–603 (1993) CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Dontchev, A.L., Hager, W.W., Poore, A.B., Yang, B.: Optimality, stability, and convergence in nonlinear control. Appl. Math. Optim. 31, 297–326 (1995) CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Druet, P.E., Klein, O., Sprekels, J., Tröltzsch, F., Yousept, I.: Optimal control of three-dimensional state-constrained induction heating problems with nonlocal radiation effects. SIAM J. Control Optim. 49(4), 1707–1736 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Dunn, J.C.: On second order sufficient optimality conditions for structured nonlinear programs in infinite-dimensional function spaces. In: Fiacco, A. (ed.) Mathematical Programming with Data Perturbations, pp. 83–107. Marcel Dekker, New York (1998) Google Scholar
  40. 40.
    Fiacco, A.V., McCormick, G.P.: Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Wiley, New York-London-Sydney (1968) zbMATHGoogle Scholar
  41. 41.
    Goldberg, H., Tröltzsch, F.: Second order sufficient optimality conditions for a class of non-linear parabolic boundary control problems. SIAM J. Control Optim. 31, 1007–1025 (1993) CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Goldberg, H., Tröltzsch, F.: On a Lagrange-Newton method for a nonlinear parabolic boundary control problem. Optim. Methods Softw. 8, 225–247 (1998) CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Griesse, R., Metla, N., Rösch, A.: Local quadratic convergence of SQP for elliptic optimal control problems with mixed control-state constraints. Control Cybern. 39(3), 717–738 (2010) zbMATHGoogle Scholar
  44. 44.
    Griesse, R., Volkwein, S.: A primal-dual active set strategy for optimal boundary control of a nonlinear reaction-diffusion system. SIAM J. Control Optim. 44(2), 467–494 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Haller-Dintelmann, R., Meyer, C., Rehberg, J., Schiela, A.: Hölder continuity and optimal control for nonsmooth elliptic problems. Appl. Math. Optim. 60(3), 397–428 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Hintermüller, M., Tröltzsch, F., Yousept, I.: Mesh-independence of semismooth Newton methods for Lavrentiev-regularized state constrained nonlinear optimal control problems. Numer. Math. 108(4), 571–603 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Hinze, M.: A variational discretization concept in control constrained optimization: the linear-quadratic case. J. Comput. Optim. Appl. 30, 45–63 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Hinze, M., Kunisch, K.: Second order methods for optimal control of time-dependent fluid flow. SIAM J. Control Optim. 40(3), 925–946 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Hinze, M., Kunisch, K.: Second order methods for boundary control of the instationary Navier-Stokes system. Z. Angew. Math. Mech. 84, 171–187 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    Hinze, M., Meyer, C.: Stability of semilinear elliptic optimal control problems with pointwise state constraints. Comput. Optim. Appl. 52(1), 87–114 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    Hinze, M., Rösch, A.: Discretization of optimal control problems. In: Leugering, G., Engell, S., Griewank, A., Hinze, M., Rannacher, R., Schulz, V., Ulbrich, M., Ulbrich, S. (eds.) Constrained Optimization and Optimal Control for Partial Differential Equations. ISNM, vol. 160, pp. 391–430. Birkhäuser, Basel (2012) CrossRefGoogle Scholar
  52. 52.
    Hinze, M., Tröltzsch, F.: Discrete concepts versus error analysis in PDE constrained optimization. GAMM-Mitt. 33, 148–162 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  53. 53.
    Ioffe, A.D.: Necessary and sufficient conditions for a local minimum 3: second order conditions and augmented duality. SIAM J. Control Optim. 17, 266–288 (1979) CrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. North-Holland, Amsterdam (1979) zbMATHGoogle Scholar
  55. 55.
    Kammann, E., Tröltzsch, F., Volkwein, S.: A-posteriori error estimation for semilinear parabolic optimal control problems with application to model reduction by POD. ESAIM: Math. Mod. Numer. Anal. 47(2), 555–581 (2013) CrossRefzbMATHGoogle Scholar
  56. 56.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980) zbMATHGoogle Scholar
  57. 57.
    Krumbiegel, K., Neitzel, I., Rösch, A.: Sufficient optimality conditions for the Moreau-Yosida-type regularization concept applied to semilinear elliptic optimal control problems with pointwise state constraints. Ann. Acad. Rom. Sci. Ser. Math. Appl. 2(2), 222–246 (2010) zbMATHMathSciNetGoogle Scholar
  58. 58.
    Krumbiegel, K., Neitzel, I., Rösch, A.: Regularization for semilinear elliptic optimal control problems with pointwise state and control constraints. Comput. Optim. Appl. 52(1), 181–207 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  59. 59.
    Krumbiegel, K., Rehberg, J.: Second order sufficient optimality conditions for parabolic optimal control problems with pointwise state constraints. SIAM J. Control Optim. 51(1), 304–331 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  60. 60.
    Lions, J.L.: Contrôle Optimal de Systèmes Gouvernès Par des Équations aux Dérivées Partielles. Dunod, Gauthier-Villars, Paris (1968) zbMATHGoogle Scholar
  61. 61.
    Luenberger, D.G.: Linear and Nonlinear Programming. Addison Wesley, Reading (1984) zbMATHGoogle Scholar
  62. 62.
    Malanowski, K.: Stability and sensitivity of solutions to optimal control problems for systems with control appearing linearly. Appl. Math. Optim. 16, 73–91 (1987) CrossRefzbMATHMathSciNetGoogle Scholar
  63. 63.
    Malanowski, K., Tröltzsch, F.: Lipschitz stability of solutions to parametric optimal control for parabolic equations. J. Anal. Appl. (ZAA) 18, 469–489 (1999) zbMATHGoogle Scholar
  64. 64.
    Malanowski, K., Tröltzsch, F.: Lipschitz stability of solutions to parametric optimal control for elliptic equations. Control Cybern. 29, 237–256 (2000) zbMATHGoogle Scholar
  65. 65.
    Maurer, H.: First and second order sufficient optimality conditions in mathematical programming and optimal control. Math. Program. Stud. 14, 163–177 (1981) CrossRefzbMATHGoogle Scholar
  66. 66.
    Maurer, H., Zowe, J.: First- and second-order conditions in infinite-dimensional programming problems. Math. Program. 16, 98–110 (1979) CrossRefzbMATHMathSciNetGoogle Scholar
  67. 67.
    Meyer, C., Philip, P., Tröltzsch, F.: Optimal control of a semilinear PDE with nonlocal radiation interface conditions. SIAM J. Control Optim. 45, 699–721 (2006) CrossRefMathSciNetGoogle Scholar
  68. 68.
    Meyer, C., Rösch, A.: Superconvergence properties of optimal control problems. SIAM J. Control Optim. 43, 970–985 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  69. 69.
    Meyer, C., Yousept, I.: State-constrained optimal control of semilinear elliptic equations with nonlocal radiation interface conditions. SIAM J. Control Optim. 48(2), 734–755 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  70. 70.
    Mittelmann, H.D., Tröltzsch, F.: Sufficient optimality in a parabolic control problem. In: Siddiqi, A.H., Kocvara, M. (eds.) Trends in Industrial and Applied Mathematics, pp. 305–316. Kluwer Academic, Dordrecht (2002) CrossRefGoogle Scholar
  71. 71.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999) CrossRefzbMATHGoogle Scholar
  72. 72.
    Osmolovskii, N.P., Maurer, H.: Applications to Regular and Bang-Bang Control. Advances in Design and Control, vol. 24. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2012). Second-order necessary and sufficient optimality conditions in calculus of variations and optimal control. CrossRefzbMATHGoogle Scholar
  73. 73.
    Pieper, K., Vexler, B.: A priori error analysis for discretization of sparse elliptic optimal control problems in measure space. SIAM J. Control Optim. 51(4), 2788–2808 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  74. 74.
    Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962) zbMATHGoogle Scholar
  75. 75.
    Raymond, J.-P., Tröltzsch, F.: Second order sufficient optimality conditions for nonlinear parabolic control problems with state constraints. Discrete Contin. Dyn. Syst. 6, 431–450 (2000) CrossRefzbMATHGoogle Scholar
  76. 76.
    Rösch, A.: Second order optimality conditions and stability estimates for the identification of nonlinear heat transfer laws. In: Vorau-Proceedings (1997) Google Scholar
  77. 77.
    Rösch, A., Tröltzsch, F.: Sufficient second order optimality conditions for a state-constrained optimal control problem of a weakly singular integral equation. Num. Funct. Anal. Appl. 23, 173–193 (2002) CrossRefzbMATHGoogle Scholar
  78. 78.
    Rösch, A., Tröltzsch, F.: Sufficient second order optimality conditions for a parabolic optimal control problem with pointwise control-state constraints. SIAM J. Control Optim. 42(1), 138–154 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  79. 79.
    Rösch, A., Tröltzsch, F.: Sufficient second-order optimality conditions for an elliptic optimal control problem with pointwise control-state constraints. SIAM J. Optim. 17(3), 776–794 (2006) (electronic) CrossRefzbMATHMathSciNetGoogle Scholar
  80. 80.
    Rösch, A., Wachsmuth, D.: Numerical verification of optimality conditions. SIAM J. Control Optim. 47(5), 2557–2581 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  81. 81.
    Rösch, A., Wachsmuth, D.: A-posteriori error estimates for optimal control problems with state and control constraints. Numer. Math. 120(4), 733–762 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  82. 82.
    Roubíček, T., Tröltzsch, F.: Lipschitz stability of optimal controls for the steady state Navier-Stokes equations. Control Cybern. 32, 683–705 (2003) zbMATHGoogle Scholar
  83. 83.
    Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications, vol. 112. Am. Math. Soc., Providence (2010) zbMATHGoogle Scholar
  84. 84.
    Tröltzsch, F., Wachsmuth, D.: Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations. ESAIM Control Optim. Calc. Var. 12, 93–119 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  85. 85.
    Ulbrich, M.: Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces. MOS-SIAM Series on Optimization, vol. 11. Society for Industrial and Applied Mathematics (SIAM), Mathematical Optimization Society, Philadelphia (2011) CrossRefzbMATHGoogle Scholar
  86. 86.
    Ulbrich, S., Ziems, J.C.: Adaptive multilevel inexact SQP methods for PDE-constrained optimization. SIAM J. Optim. 21, 1–40 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  87. 87.
    Unger, A.: Hinreichende Optimalitätsbedingungen 2. Ordnung und Konvergenz des SQP–Verfahrens für semilineare elliptische Randsteuerprobleme. Ph.D. Thesis, Technische Universität Chemnitz (1997) Google Scholar
  88. 88.
    Wachsmuth, D., Rösch, A.: How to check numerically the sufficient optimality conditions for infinite-dimensional optimization problems. In: Optimal Control of Coupled Systems of Partial Differential Equations. Internat. Ser. Numer. Math., vol. 158, pp. 297–317. Birkhäuser, Basel (2009) CrossRefGoogle Scholar

Copyright information

© Deutsche Mathematiker-Vereinigung and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Departamento de Matemática Aplicada y Ciencias de la Computación, E.T.S.I. Industriales y de TelecomunicaciónUniversidad de CantabriaSantanderSpain
  2. 2.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations