Advertisement

Chromatographia

, 69:829 | Cite as

LC with Coulometric Detection for Analysis of 5-Methyltetrahydrofolate in Human Plasma

  • Marcin Leszek MarszałłEmail author
  • Ryszard Makarowski
  • Sylwia Hinc
  • Wojciech Czarnowski
Original
  • 73 Downloads

Abstract

An isocratic high-performance liquid chromatographic method with coulometric electrochemical detection has been used for analysis of 5-methyltetrahydrofolate (5-MTHF) in human plasma. A 250 mm × 4.6 mm i.d., 5-μm particle, C18 column was used with 12:88 (v/v) acetonitrile −35 mM sodium phosphate buffer pH 3.8 as mobile phase at a flow rate of 1.0 mL min−1. The method was validated for 5-MTHF plasma concentrations in the range 2.5–100.0 nM. The method was characterized by a good linearity (regression coefficient r ≥ 0.9989) and limits of detection and quantification of 0.72 and 2.16 nM, respectively. Mean recovery at low and high concentrations ranged from 89.1 to 96.3%, respectively, with a relative standard deviation <4.6%. Between-run imprecision (4.2%) was higher than within-run imprecision (3.4%). The proposed separation and detection procedures were successfully applied to analysis of 5-MTHF in human plasma.

Keywords

Column liquid chromatography Coulometric detection Human plasma 5-Methyltetrahydrofolate 

References

  1. 1.
    Födinger M, Skoupy S, Sunder-Plassmann G (2002) In: Massaro EJ, Rogers JM (eds) Folate in human development. Humana Press, Totowa, pp 91–115Google Scholar
  2. 2.
    Bolander-Gouaille C, Bottiglieri T (2003) Homocysteine-related vitamins and neuropsychiatric disorders. Springer, FranceGoogle Scholar
  3. 3.
    Alemdaroglu NC (2008) Impact of folate absorption and transport for nutrition and drug targeting. VDM Verlag Dr Müller Akiengesellschaft, Saarbrücken, GermanyGoogle Scholar
  4. 4.
    Quinlivan ER, Hanson AD, Gregory JF (2006) Anal Biochem 348:163–184. doi: 10.1016/j.ab.2005.09.017 CrossRefGoogle Scholar
  5. 5.
    Otani T, Iwasaki M, Sasazuki S, Inoue M (2008) Cancer Causes Control 19:67–74. doi: 10.1007/s10552-007-9071-z CrossRefGoogle Scholar
  6. 6.
    Takimoto H, Mito N, Umegaki K, Ishiwaki A, Kusama K, Abe S, Yamawaki M, Fukuoka H, Ohta C, Yoshiike N (2007) Eur J Nutr 46:300–306. doi: 10.1007/s00394-007-0667-6 CrossRefGoogle Scholar
  7. 7.
    Lin C, Yin M (2007) Eur J Nutr 46:293–299. doi: 10.1007/s00394-007-0665-8 CrossRefGoogle Scholar
  8. 8.
    McDonald SD, Perkins SL, Jodouin CA, Walker MC (2002) Am J Obstet Gynecol 187:620–625. doi: 10.1067/mob.2002.125239 CrossRefGoogle Scholar
  9. 9.
    Wallock LM, Tamura T, Mayr CA, Johnston KE, Ames BN, Jacob RA (2001) Fertil Steril 75:252–259. doi: 10.1016/S0015-0282(00)01697-6 CrossRefGoogle Scholar
  10. 10.
    Ghandour H, Bagley PJ, Shemin D, Hsu N, Jacques PF, Dworkin L, Bostom AG, Selhub J (2002) Kidney Int 62:2246–2249. doi: 10.1046/j.1523-1755.2002.00666.x CrossRefGoogle Scholar
  11. 11.
    Revell P, O’Doherty MJ, Tang A, Savidge GF (1991) J Intern Med 230:227–231CrossRefGoogle Scholar
  12. 12.
    Ramaekers VT, Sequeira JM, Artuch R, Blau N, Temudo T, Ormazabal A, Pineda M, Aracil A, Roelens F, Laccone F, Quadros EV (2007) Neuropediatrics 38:179–183. doi: 10.1055/s-2007-991148 CrossRefGoogle Scholar
  13. 13.
    Blau N, Opladen T (2008) Folates. In: Blau N, Duran M, Gibson KM (eds) Laboratory guide to methods in biochemical genetics. Springer, Germany, pp 717–724CrossRefGoogle Scholar
  14. 14.
    Opladen T, Ramaekers VTh, Heimann G, Blau N (2006) Mol Genet Metab 87:61–65. doi: 10.1016/j.ymgme.2005.08.011 CrossRefGoogle Scholar
  15. 15.
    Ramaekers VT, Blau N (2004) Dev Med Child Neurol 46:843–851. doi: 10.1017/S0012162204001471 CrossRefGoogle Scholar
  16. 16.
    Lucock MD, Daskalakis I, Schorach CJ, Lumb CH, Oliver M, Devitt H, Wold J, Dowell AC, Levene MI (1999) Mol Genet Metab 67:23–35. doi: 10.1006/mgme.1999.2813 CrossRefGoogle Scholar
  17. 17.
    Rauh M, Verwied S, Knerr I, Dörr HG, Sönnichsen A, Koletzko B (2001) Amino Acids 20:409–418. doi: 10.1007/s007260170037 CrossRefGoogle Scholar
  18. 18.
    Canepa A, Carrea A, Caridi G, Dertenois L, Minniti G, Cerone R, Canini S, Calevo MG, Perfumo F (2003) Pediatr Nephrol 18:225–229Google Scholar
  19. 19.
    Lucock MD, Daskalakis I, Schorah CJ, Levene NI, Hartley R (1996) Biochem Mol Med 58:93–112. doi: 10.1006/bmme.1996.0037 CrossRefGoogle Scholar
  20. 20.
    Chen MF, McIntyre PA, Kertcher JK (1979) J Nucl Med 19:906–912Google Scholar
  21. 21.
    Chládek J, Šišpera L, Martínková J (2000) J Chromatogr B 744:307–317. doi: 10.1016/S0378-4347(00)00257-7 CrossRefGoogle Scholar
  22. 22.
    Ormazabal A, García-Cazorla A, Pérez-Dueñas B, Gonzales V, Fernández-Álvarez E, Pineda M, Campistol J, Artuch R (2006) Clin Chim Acta 37:159–162. doi: 10.1016/j.cca.2006.03.004 CrossRefGoogle Scholar
  23. 23.
    Garbis SA, Melse-Boonstra A, West CE, van Breemen RB (2001) Anal Chem 73:5358–5364. doi: 10.1021/ac010741y CrossRefGoogle Scholar
  24. 24.
    Hart DJ, Finglas PM, Wolfe CA, Mellon F, Wright AJA, Southon S (2002) Anal Biochem 305:206–213. doi: 10.1006/abio.2002.5662 CrossRefGoogle Scholar
  25. 25.
    Kok RM, Smith DEC, Dainty JR, van den Akker JT, Finglas PM, Smulders YM, Jakobs C, De Meer K (2004) Anal Biochem 326:129–138. doi: 10.1016/j.ab.2003.12.003 CrossRefGoogle Scholar
  26. 26.
    Nelson BC, Pfeiffer CM, Margolis SA, Nelson CP (2003) Anal Biochem 313:117–127. doi: 10.1016/S0003-2697(02)00531-6 CrossRefGoogle Scholar
  27. 27.
    Nelson BC, Saterfield MB, Sniegoski LT, Welch MJ (2005) Anal Chem 77:3586–3593. doi: 10.1021/ac050235z CrossRefGoogle Scholar
  28. 28.
    Bagley PJ, Selhub J (2000) Clin Chem 46:404–411Google Scholar
  29. 29.
    Etienne MC, Speziale N, Milano G (1983) Clin Chem 39:82–86Google Scholar
  30. 30.
    Lankelma J, van der Kleijn E, Jansen M (1980) J Chromatogr 182:35–45CrossRefGoogle Scholar
  31. 31.
    Lucock MD, Hartley R, Smithells RW (1989) Biomed Chromatogr 3:58–63. doi: 10.1002/bmc.1130030204 CrossRefGoogle Scholar
  32. 32.
    Hyland K, Surtees R (1992) Pteridines 3:149–150.Google Scholar
  33. 33.
    Flanagan RJ, Perrett D, Whelpton R (2005) Electrochemical detection in HPLC. Analysis of drugs and poisons. Royal Society of Chemistry, Cambridge, UKGoogle Scholar
  34. 34.
    McMaster MC (2007) HPLC: a practical user’s guide, 2nd edn. Wiley, HobokenGoogle Scholar
  35. 35.
    Garofolo F (2004) In: Chan CC, Lee YC, Lam H, Zhang XM (eds) Analytical method validation and instrument performance verification. Wiley, Hoboken, pp 197–220Google Scholar
  36. 36.
    Eitenmiller RR, Ye L, Landen WO Jr (2008) Vitamin analysis for the health and food sciences, 2nd edn. CRC Press, Boca Raton, pp 443–505Google Scholar
  37. 37.
    Lucock MD, Green M, Preistnall M, Daskalakis I, Levene MI, Hartley R (1995) Food Chem 53:329–338. doi: 10.1016/0308-8146(95)93941-J CrossRefGoogle Scholar
  38. 38.
    Oey I, Verlinde P, Hendrickx M, Van Loey A (2006) Eur Food Res Technol 223:71–77. doi: 10.1007/s00217-005-0123-x CrossRefGoogle Scholar

Copyright information

© Vieweg+Teubner | GWV Fachverlage GmbH 2009

Authors and Affiliations

  • Marcin Leszek Marszałł
    • 1
    Email author
  • Ryszard Makarowski
    • 2
  • Sylwia Hinc
    • 1
  • Wojciech Czarnowski
    • 1
  1. 1.Department of ToxicologyMedical University of GdańskGdańskPoland
  2. 2.Department of PsychologyUniversity of GdańskGdańskPoland

Personalised recommendations