Advertisement

Chromatographia

, Volume 69, Issue 3–4, pp 195–198 | Cite as

Optimization of the LC Separation of 15 Phenolic Compounds with Plackett–Burman Designs

  • Randa Ben Guebila
  • Fayçal HellalEmail author
Original

Abstract

In this study Plackett–Burman designs have been used to find the optimum conditions for separation of 15 phenolic compounds by LC. The responses used were the minimum resolution between two peaks and the analysis time. The adopted factors and experimental field were organic modifier (MeOH or ACN), percentage of acetic acid in the aqueous phase, flow rate, gradient with ten steps of percentage increase of the organic component of the mobile phase, and ten factors representing the duration of the steps. Use of Plackett–Burman designs achieved separation of the phenolic compounds within 45 min.

Keywords

Column liquid chromatography Olive oil Polyphenols Plackett–Burman designs Experimental designs Screening 

References

  1. 1.
    Kachouri F, Hamdi M (2004) Process Biochem 39:841–845. doi: 10.1016/S0032-9592(03)00189-4 CrossRefGoogle Scholar
  2. 2.
    Caponio F, Allogio V, Gomes T (1999) Food Chem 64:203–209. doi: 10.1016/S0308-8146(98)00146-0 CrossRefGoogle Scholar
  3. 3.
    Owen RW, Mier W, Giacosa A, Hull WE, Spiegelhalder B, Bartsch H (2000) Food Chem Toxicol 38:647–659. doi: 10.1016/S0278-6915(00)00061-2 CrossRefGoogle Scholar
  4. 4.
    Brenes M, Garcia A, Garcia P, Rios JJ, Garrido A (1999) J Agric Food Chem 47:3535–3540. doi: 10.1021/jf990009o CrossRefGoogle Scholar
  5. 5.
    Berridge JC (1982) J Chromatogr A 244:1–14. doi: 10.1016/S0021-9673(00)80117-X CrossRefGoogle Scholar
  6. 6.
    Schlabach TD, Excoffier JL (1988) J Chromatogr A 439:173–184. doi: 10.1016/S0021-9673(01)83832-2 CrossRefGoogle Scholar
  7. 7.
    Siouffi AM, Phan-Tan-Luu R (2000) J Chromatogr A 892:75–106. doi: 10.1016/S0021-9673(00)00247-8 CrossRefGoogle Scholar
  8. 8.
    Japòn-Luján R, Luque-Rodríguez JM, Luque de Castro MD (2006) J Chromatogr A 1108:76–82. doi: 10.1016/j.chroma.2005.12.106 CrossRefGoogle Scholar
  9. 9.
    Pirisi FM, Cabras P, Falqui Cao C, Migliorini M, Muggelli M (2000) J Agric Food Chem 48:1191–1196. doi: 10.1021/jf991137f CrossRefGoogle Scholar
  10. 10.
    Tasioula-Margari M, Okogeri O (2001) Food Chem 74:377–383. doi: 10.1016/S0308-8146(01)00176-5 CrossRefGoogle Scholar
  11. 11.
    Naczk M, Shahidi F (2004) J Chromatogr A 1054:95–111Google Scholar
  12. 12.
    Torres MM, Maestri DM (2006) Food Chem 96:507–511. doi: 10.1016/j.foodchem.2005.03.003 CrossRefGoogle Scholar
  13. 13.
    Plackett RL, Burman JP (1946) Biometrika 33:305–325. doi: 10.1093/biomet/33.4.305 CrossRefGoogle Scholar
  14. 14.
    Hellal F, Ben Guebila R (2007) VI Colloquium Chemiometricum Mediterraneum. Saint Maximim, FranceGoogle Scholar
  15. 15.
    Goupy J (2005) Anal Chim Acta 544:184–190. doi: 10.1016/j.aca.2005.01.051 CrossRefGoogle Scholar
  16. 16.
    Lewis GA, Mathieu D, Phan-Tan-Luu R (1999) Pharmaceutical experimental design. Marcel Dekker, New YorkGoogle Scholar

Copyright information

© Vieweg+Teubner | GWV Fachverlage GmbH 2009

Authors and Affiliations

  1. 1.Département de ChimieInstitut National des Sciences Appliquées et de TechnologieTunis cedexTunisia

Personalised recommendations