Skip to main content
Log in

Computational thermodynamic model for the Mg−Al−Y system

  • Section I: Basic and Applied Research
  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The ternary Mg−Al−Y system was thermodynamically modeled based on the optimization of the binary subsystems Mg−Al, Mg−Y, and Al−Y using the CALPHAD approach. Mg−Al data was taken from the COST507 database, whereas the other two binary systems were reoptimized in this work. The liquid phase was described by a Redlich-Kister polynomial model, and the intermediate solid solutions were described by a sublattice model. Ternary interaction parameters were introduced to enable the best representation of the experimental data while considering the occurrence of the ternary compound Al4MgY. The constructed database is used to calculate and predict thermodynamic properties, binary phase diagrams of Al−Y and Mg−Y, and liquidus projections of the ternary Mg−Al−Y. The calculated phase diagrams and the thermodynamic properties are in good agreement with the corresponding experimental data from the literature. Sixteen ternary four-phase-equilibria invariant points were predicted in the Mg−Al−Y system: seven ternary eutectic points, eight ternary quasi peritectic points, and one ternary peritectic point. Further, fifteen three-phase-equilibria in variant points were determined: eight saddle points and seven binary eutectic points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gröbner, D. Kevorkov, R. Schmid-Fetzer, F.W. Bach, H. Heferkamp, and C. Jaschik, The CALPHAD Approach in the Focused Design of Magnesium Alloy, J.-C. Zhao, M. Fahrmann, and T. Pollock, Ed., Materials Design Approaches and Experiences, TMS, 2001, p 241–253

  2. M. Suzuki, H. Sato, K. Maruyama, and H. Oikawa, Creep Behavior and Deformation Microstructures of Mg-Y alloys at 550 K, Mater. Sci. Eng. A, 252 (2), 1998, p 248–255

    Article  Google Scholar 

  3. I.A. Anyanwu, S. Kamado, and Y. Kojima, Aging Characteristics and High Temperature Tensile Properties of Mg-Gd-Y-Zr Alloys, Mater. Sci. Eng. A, 2001, 42(7), p 1206–1211

    Google Scholar 

  4. H. Seifert, J. Gröbner, F. Aldinger, F.H. Hayes, G. Effenberg, C. Batzner, H. Flandorfer, P. Rogl, A. Saccone, and R. Ferro, Thermodynamic Calculation and Experimental Studies of Phase Relations in the Mg−Mg−Y−Zr System, B.W. Lorimer, Ed., Proceedings of the International Magnesium Conference, 3rd ed. Apr. 10–12, 1996 (Manchester, UK), Institute of Materials, London, UK, 1997, pp 257–270

    Google Scholar 

  5. N.V. Ravi Kumar, J.J. Blandin, M. Suery, and E. Grosjean, Effect of Alloying Elements on the Ignition Resistance of Magnesium Alloys, Scripta Mater., 2003, 49, p 225–230

    Article  Google Scholar 

  6. M. Socjusz-Podosek and L. Lity nska, Effect of Yttrium on Structure and Mechanical Properties of Mg Alloys, Mater. Chem. Phys., 2003, 80(2), p 472–475

    Article  Google Scholar 

  7. I. Ansara, A.T. Dinsdale, and M.H. Rand, COST507-Thernochemical Database for Light Metal Alloys, European Commission EUR 18499, Brussels, 1998

    Google Scholar 

  8. A. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15(4), p 317–425

    Article  Google Scholar 

  9. O. Redlich, A.T. Kister, Thermodynamics of Nonelectrolyte Solutions, X-Y-T Relations in a Binary System, J. Ind. Eng. Chem., 1948, 40, p 341–345

    Article  Google Scholar 

  10. Pandat 4.0: Multi-Component Phase Diagram Calculation Software, Computherm LLC, Madison, WI, 2000–2003

  11. Kh.O. Odinaev and I.N. Ganiev, Quasibinary Sections and Liquidus Surface of the Aluminum-Magnesium-Yttrium Aluminide (YAI2) System, Izv. Vyssh. Uchebn. Zaved. Tsvetn, Metall., 1990, 6, p 90–95, in Russian

    Google Scholar 

  12. K.C. Hari Kumar and P. Wollants, Some Guidelines for Thermodynamic Optimization of Phase Diagrams. J. Alloys Compd., 2001, 320(2), p 189–198

    Article  Google Scholar 

  13. E.M. Savitskii and V.F. Terekhova, Study of Rare Metals and Alloys, E.M. Savitski, Ed., IP Bardin Razvit. Metall. SSSR, Moscow, USSSR Conference, Nauka, Moscow, 1976, p 240–57, in Russian

    Google Scholar 

  14. R.L. Snyder, “Yttrium-Aluminum Alloy Studies,” Master's Thesis, Iowa State University for Science and Technology, Ames, IA, 1960

    Google Scholar 

  15. C.E. Lundin, Jr. and D.T. Klodt, Phase Equilibria in the Yttrium-Aluminum System, Am. Soc. Metals Trans. Quart., 1961, 54(2), p 68–75

    Google Scholar 

  16. M.E. Drits, E.S. Kadaner, and N.D. Shoa, Structure and Properties of Aluminum-Rich Al-Y Alloys, Izv. Akad. Nauk SSSR. Metally, 1969, 6, p 150–153, in Russian

    Google Scholar 

  17. K.A. Gschneidner, Jr. and F.W. Calderwood, The Al-Y (Aluminum-Yttrium) System. Ames Lab., Iowa State Univ., Ames, IA, USA, Bull. alloy Phase Diagrams, 1989, 10(1), p 44–47

    Google Scholar 

  18. P.I. Kripyakevich, The Crystal Structure of YAl2, Kristallografiya, 1960, 5, p 463–464

    Google Scholar 

  19. C. Rongzhen, W. Xiangzhong, and L. Jingqi, The Isothermal Section of the Phase Diagram of the Ternary System Al−Sn−Y at Room Temperature, J. Alloys Compd., 1995, 218(2), p 221–223

    Article  Google Scholar 

  20. Z. Lingmin and W. Shouyu, The 800 K Isothermal Section of the Y−Al−Sb Phase Diagram, J. Alloys Compd., 2003, 351 (1–2), p 176–179

    Google Scholar 

  21. A. Chelkowski, E. Talik, J. Szade, J. Heimann, A. Winiarska, and A. Winiarski, Solid Solubility of Rare Earths in Aluminum, J. Less-Common Met., 1988, 141(2), p 213–216

    Article  Google Scholar 

  22. R. Richter, Z. Altounian, J.O., Strom-Olsen, U. Koester, and M. Blank-Bewersdorff, Y5Al3, A New Yttrium-Aluminum Compound, J. Mater. Res., 1987, 22(8), p 2983–2986

    Google Scholar 

  23. D.M. Bailey, Structures of Two Polymorphic Forms of YAl3, Acta Crystallogr., 1967, 23(5), p 729–733

    Article  Google Scholar 

  24. R. Raggio, G. Borzone, and R. Ferro, The Al-Rich Region in The Y−Ni−Al System: Microstructures and Phase Equilibria, Intermetallics, 2000, 8(3), p 247–257

    Article  Google Scholar 

  25. Yu.O. Esin, P.V. Gel'd, M.S. Petrushevskii, G.M. Ryss, and A.I. Stroganov, Enthalpies of Formation of Yttrium and Aluminum Melts, Doklady Akademii Nauk SSSR, 1976, 228(2), p 386–388, in Russian, [English translation available at: Doklady Phys. Chem., 1976, 228(2), p 458–460]

    Google Scholar 

  26. G.M. Ryss, Yu.O. Esin, and A.I. Stroganov, and P.V. Gel'd, Enthalpies of Formation of Yttrium-Aluminum Molten Alloys, Zh. Fiz. Khim, 1976 50(4), p 985–986, in Russian

    Google Scholar 

  27. V.I. Kober, I.F. Nichkov, S.P. Raspopin, and, V.N. Nauman, Phase Composition and Thermodynamic Properties of Yttrium-Aluminum System, Izv. Vyssh. Uchebn, Zaved., Tsvetn. Metall., 1979, 5, p 40–43, in Russian

    Google Scholar 

  28. G.N. Zviadadze, A.A. Petrov, and E.K. Kazenas, Thermodynamics of the Vacuum Evaporation of Alloys of Scandium, Yttrium, Lanthanum, and Neodymium with Aluminum, A.I. Monokhin, Ed., Protsessy Tsvetnoei Metallurgii pri Nizkikh Davleniyakh, Izd. Nauka, Moscow, USSR, 1983, p 94–98, in Russian

    Google Scholar 

  29. J. Gröbner, H. Lukas, and F. Aldinger, Thermodynamic Calculations in the Y−Al−C System. J. Alloys Compd., 1995, 220 (1–2), p 8–14

    Article  Google Scholar 

  30. V.S. Timofeev, A.A. Turchanin, A.A. Zubko, VI, and I.A. Tomilin, Enthalpies of Formation for the Al−Y and Al−Y−Ni Intermetallic Compounds, Thermochim. Acta, 1997, 299, p 37–41, in Russian

    Article  Google Scholar 

  31. G. Borzone, A. Cicciolia, P.L. Cigninia, M. Ferrinia, and D. Gozzia, Thermodynamics of the YAl−YAl2 System, Intermetallics, 2000, 8(3), p 203–212

    Article  Google Scholar 

  32. M.S. Petrusheveskii and G.M. Ryss, Calculations of the Activities of Components in Liquid Binary Alloys of Yttrium with Aluminum and Silicon, Zh. Fiz. Khim., 1986, 60(6), p 1532–1535, in Russian

    Google Scholar 

  33. V.K. Kulifeev and V.N. Kaplenkov, Thermodynamics of the Interaction in the System Yttrium-Aluminum, Zh. Metall., 1981, 131, p 110–112, in Russian

    Google Scholar 

  34. Z.A. Sviderskaya and E.M. Padezhnova, Phase Equilibriums in Magnesium-Yttrium and Magnesium-Yttrium-Manganese Systems, Izv. Akad. Nauk. SSSR Metally, 1968, 6, p 183–190, in Russian

    Google Scholar 

  35. E.D. Gibson and O.N. Carlson, The Yttrium-Magnesium Alloy System, Trans. Am. Soc. Metal., 1960, 52, p 1084–1096

    Google Scholar 

  36. D. Mizer and J.B. Clark, Magnesium-Rich Region of the Magnesium-Yttrium Phase Diagram, T. Am. I. Min. Met. Eng., 1961, 221, p 297–208.

    Google Scholar 

  37. T.B. Massalski, Binary Alloy Phase Diagrams, 2nd Ed., ASM International, 1990, p 1–3

  38. J.F. Smith, D.M. Bailey, D.B. Novotny, and J.E. Davison, Thermodynamics of Formation of Yttrium-Magnesium Intermediate Phases, Acta Mater., 1965, 13(8), p 889–895

    Article  Google Scholar 

  39. H. Flandorfer, M. Giovannini, A. Saccone, P. Rogl, and R. Ferro, The Ce−Mg−Y System, Metall. Mater. Trans. A, 1997, 28A (2), p 265–276

    Article  Google Scholar 

  40. M.-X. Zhang and P.M. Kelly, Edge-to-edge Matching and Its Applications Part II. Application to Mg−Al, Mg−Y, and Mg−Mn Alloys, Acta Mater., 2005, 53(4), p 1085–1096

    Article  Google Scholar 

  41. R. Agarwal, H. Feufel, and F. Sommer, Calorimetric Measurements of Liquid La−Mg, Mg−Yb, and Mg−Y Alloys. J. Alloys Compd., 1995, 217(1), p 59–64

    Article  Google Scholar 

  42. O.B. Fabrichnaya, H.L. Lukas, G. Effenberg, and F. Aldinger, Thermodynamic Optimization in the Mg−Y System, Intermetallics, 2000, 11(11–12), p 1183–1188

    Google Scholar 

  43. V. Ganesan, F. Schuller, F. Harald, F. Sommer, and H. Ipser, Thermodynamic Properties of Ternary Liquid Cu−Mg−Y Alloys, Z. Metallkd., 1997, 88(9), p 701–710.

    Google Scholar 

  44. V. Ganesan and H. Ipser, Thermodynamic Properties of Liquid Magnesium-Yttrium Alloys, J. Chim. Physique, 1997, 94(5), p 986–991

    Google Scholar 

  45. Q. Ran, H.L. Lukas, G. Effenberg, and G. Petzow, Thermodynamic Optimization of the Magnesium-Yttrium System, CALPHAD, 1988, 12(4), p 375–381

    Article  Google Scholar 

  46. I.N. Pyagai, E.Z. Khasanova, A.V. Vakhobov, and O.V. Zhikhareva, Heat of Formation of the Intermetallic Compound Magnesium Ytterbium, (Mg2Yb) at 298 K, Dokl. Akad. Nauk Tadzh. SSR., 1990, 33(9), p 602–604

    Google Scholar 

  47. M.E. Drits, E.M. Padezhnova, and T.V. Dobatkina, Phase Equilibriums in Magnesium-Yttrium-Aluminum Alloys, Izv. Akad. Nauk. SSSR Metally, 1979, 3, p 223–227

    Google Scholar 

  48. O.S. Zarechnyuk, M.E. Drits, R.M. Rykhal, and V.V. Kinzhibalo, Study of a Magnesium-Aluminum-Yttrium System at 400 in the Phase Containing 0-33.3 at.% Yttrium, Izv. Akad. Nauk. SSSR Metally, 1980, 5, p 242–244

    Google Scholar 

  49. Kh.O. Odinaev, I.N. Ganiev, V.V. Kinzhibalo, and Kh.K. Kurbanov, Phase Equilibria in Aluminum-Magnesium-Yttrium and Aluminum-Magnesium-Cerium Systems at 673 K, Izv. Vyssh. Uchebn. Zaved. Chern, Metall., 1989, 4, p 75–77, in Russian

    Google Scholar 

  50. Q. Ran, H.L. Lukas, G. Effenberg, and G. Petzow, A Thermodynamic Optimization of the Aluminum-Yttrium System, J. Less-Common Met., 1989, 146, p 213–222

    Article  Google Scholar 

  51. S. Stølen, T. Grande, Chemical Thermodynamics of Material Macroscopic and Microscopic Aspects, John Wiley & Sons, New York, 2004.

    Google Scholar 

  52. A.R. Miedema, On the Heat of Formation of Solid Alloys. J. Less-Common Met., 1976, 46(1), p 67–83

    Article  Google Scholar 

  53. K.C. Hari Kumar, I. Ansara, and P., Wollants, Sublattice Modeling of the μ-Phase, CALPHAD, 1998, 22(3), p 323–334

    Article  Google Scholar 

  54. P. Villars and L.D. Calvert, Pearson Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed, ASM International, 1991.

  55. W. Kraus and G. Nolze, Powder Cell for Windows, Version 1.0, Federal Institute for Materials Research and Testing, Berlin, Germany, 1997

    Google Scholar 

  56. J. Gröbner, R. Schmid-Fetzer, A. Pisch, G. Cacciamani, P. Riani, and R. Ferro, Experimental Investigation and Thermodynamic Calculation of the Al−Mg−Sc System, Z. Metallkd., 1999, 90(11), p 872–880

    Google Scholar 

  57. J. Gröbner, D. Kervokov, and R. Schmid-Fetzer, Thermodynamic of Al−Gd−Mg Phase Equilibria Checked by Key Experiments, Z. Metallkd., 2001, 92(1), p 2–7

    Google Scholar 

  58. J. Gröbner, D. Kervokov, and R. Schmid-Fetzer, Thermodynamic modeling of Al−Ce−Mg Phase Equilibria Coupled with Key Experiments, Intermetallics, 2002, 10(5), p 415–422

    Article  Google Scholar 

  59. Graphis Graphing Software for 2D and 3D Data—High-Quality Scientific/Engineering Visualization for the Windows DesktopA, Version: 2.6.2, Kylebakk Software Ltd., Ayr, UK, 2003

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al Shakhshir, S., Medraj, M. Computational thermodynamic model for the Mg−Al−Y system. JPED 27, 231–244 (2006). https://doi.org/10.1361/154770306X109782

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/154770306X109782

Keywords

Navigation