Advertisement

Journal of Failure Analysis and Prevention

, Volume 5, Issue 6, pp 79–94 | Cite as

Interface fracture toughness evaluation for MA956 oxide film

  • J. -A. J. Wang
  • I. G. Wright
  • M. J. Lance
  • K. C. Liu
Peer Reviewed Articles

Abstract

Microelectronics, optoelectronics, and thermal barrier coating technologies are dependent on a thin or thick film of one material deposited onto a substrate of a different material. Fabrication of such a structure inevitably gives rise to stress in the film due to lattice mismatch, differing coefficients of thermal expansion, chemical reactions, and/or other physical effects. Therefore, the weakest link in this composite system often resides at the interface between the film and substrate. In order to assume the long-term reliability of the interface, the fracture behavior of the material interfaces must be known. A new approach of using a spiral notch torsion fracture toughness test system for evaluating interface fracture toughness is described. This innovative technology was demonstrated for oxide scales formed on high-temperature alloys of MA956. The estimated energy release rate (in terms of J-integral) at the interface of the alumina scale and MA956 substrate is 3.7 N-m/m2, and the estimated equivalent Mode I fracture toughness is 1.1 MPa √m.

Keywords

composite material interface fracture toughness spiral notch thin film coating material torsion test 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.E. Lyshevski: Nano- and Microelectromechanical Systems, CRC Press, Inc., 2000, ISBN 0-8493-0916-6.Google Scholar
  2. 2.
    M. Madou: Fundamentals of Microfabrication, CRC Press, Inc., 1997, ISBN 0-8493-9451-1.Google Scholar
  3. 3.
    A.K. Ray: “Failure Mode of Thermal Barrier Coatings for Gas Turbine Vanes under Bending,” Int. J. Turbo Jet Eng., 2000, 17, pp. 1–24.Google Scholar
  4. 4.
    B.A. Pint, I.G. Wright, W.Y. Lee, Y. Zhang, K. Prüssner, and K.B. Alexander: “Substrate and Bond Coat Compositions: Factors Affecting Alumina Scale Adhesion,” Mat. Sci. Eng. A, 1998, 245, pp. 201–11.CrossRefGoogle Scholar
  5. 5.
    A.G. Evans, J.W. Hutchinson, and M.Y. He: “Micromechanics Model for the Detachment of Residually Compressed Brittle Films and Coatings,” Acta Mater., 1999, 47, pp. 1513–22.CrossRefGoogle Scholar
  6. 6.
    P.K. Wright and A.G. Evans: “Mechanisms Governing the Performance of Thermal Barrier Coatings,” Curr. Opin. Solid St. M., 1999, 4, pp. 255–65.CrossRefGoogle Scholar
  7. 7.
    D.R. Mumm, A.G. Evans, and I. Spitsberg: “Characterization of a Cycle Displacement Instability for a Thermally Grown Oxide in a Thermal Barrier System,” Acta Mater., 2001, 49, pp. 2329–40.CrossRefGoogle Scholar
  8. 8.
    J.A. Ruud et al.: “Strength Degradation and Failure Mechanism of Electron-Beam Physical-Vapor-Deposited Thermal Barrier Coatings,” J. Am. Ceram. Soc., 2001, 84, pp. 1545–52.CrossRefGoogle Scholar
  9. 9.
    A.M. Karlsson and A.G. Evans: “A Numerical Model for the Cyclic Instability of Thermally Grown Oxides in Thermal Barrier Systems,” Acta Mater., 2001, 49, pp. 1793–1804.CrossRefGoogle Scholar
  10. 10.
    V. Tolpygo and D.R. Clarke: “Surface Rumpling of a (Ni, Pt) Al Bond Coat Induced by Cyclic Oxidation,” Acta Mater., 2000, 48, 3283–93.CrossRefGoogle Scholar
  11. 11.
    M.L. William: “The Stress Around a Fault or Crack in Dissimilar Media,” B. Seismol. Soc. Am., 1959, 49, pp. 199–204.Google Scholar
  12. 12.
    F. Erdogan: “Stress Distribution in Bonded Dissimilar Materials with Cracks,” J. Appl. Mech., 1965, 1, pp. 403–10.Google Scholar
  13. 13.
    J.R. Rice: “Elastic Fracture Mechanics Concepts for Interfacial Cracks,” J. Appl. Mech., 1988, 55, pp. 98–103.Google Scholar
  14. 14.
    C.F. Shih: “Cracks on Bimaterial Interfaces: Elasticity and Plasticity Aspects,” J. Mater. Sci. Eng., 1991, A143, pp. 77–90.CrossRefGoogle Scholar
  15. 15.
    J.W. Hutchinson and Z. Suo: “Mixed Mode Cracking in Layered Materials,” Adv. Appl. Mech., 1992, 29, pp. 63–191.CrossRefGoogle Scholar
  16. 16.
    M.R. Turner and A.G. Evans: “An Experimental Study of the Mechanisms of Crack Extension along an Oxide/Metal Interface,” Acta Mater., 1996, 44(3), pp. 863–71.CrossRefGoogle Scholar
  17. 17.
    P.G. Charalambides, J. Lund, A.G. Evans, and R.M. McMeeking: “A Test Specimen for Determining the Fracture Resistance Bimaterial Interface,” J. Appl. Mech., 1989, 55, pp. 77–82.Google Scholar
  18. 18.
    Z. Suo and J.W. Hutchinson: “Sandwich Test Specimens for Measuring Interface Crack Toughness,” Mater. Sci. Eng., 1989, A107, pp. 135–43.Google Scholar
  19. 19.
    M.J. Stiger, L.A. Ortman, F.S. Pettie, and G.H. Meier: “Measurement of Interfacial Toughness in Thermal Barrier Coating System by Indentation,” ASTM Annual Program Review, ASTM, W. Conshohocken, PA, Nov 1999.Google Scholar
  20. 20.
    J. Wang, R.L. Weaver, and N.R. Sottos: “A Parametric Study of Laser Induced Thin Film,” J. Exp. Mechan., 2002, 42(1), pp. 74–83.CrossRefGoogle Scholar
  21. 21.
    V. Gupta, A.S. Argon, J.A. Cornie, and D.M. Parks: “Measurement of Interface Strength by a Laser Spallation Technique,” J. Mech. Phys. Solids, 1992, 40, pp. 141–80.CrossRefGoogle Scholar
  22. 22.
    J.A. Wang, K.C. Liu, D.E. McCabe, and S.A. David: “Using Torsion Bar Testing to Determine Fracture Toughness, KIC,” J. Fatigue Fract. Eng. Mater. Struct., 2000, 23, pp. 45–56.Google Scholar
  23. 23.
    J.A. Wang, K.C. Liu, and D.E. McCabe: “An Innovative Technique for Measuring Fracture Toughness of Metallic and Ceramic Materials,” Fatigue and Fracture Mechanics: 33rd Volume, 2002, ASTM STP 1417, pp. 757–70.Google Scholar
  24. 24.
    J.-A.J. Wang: “Oak Ridge National Laboratory Spiral Notch Torsion Test System,” Pract. Fail. Anal., Aug 2003, 3(4), pp. 23–27.CrossRefGoogle Scholar
  25. 25.
    J.A. Wang and K.C. Liu: “A New Approach to Evaluate Fracture Toughness of Structural Materials,” J. Press. Vess.-T., 2004, 126, pp. 534–40.CrossRefGoogle Scholar
  26. 26.
    H-X. Li, R.H. Jones, J.P. Hirth, and D.S. Gelles: “Fracture Toughness of the F-82H Steel—Effect of Loading Modes, Hydrogen, and Temperature,” J. Nucl. Mater., 1998, 233, pp. 258–63.CrossRefGoogle Scholar
  27. 27.
    H. Li, R.H. Jones, J.P. Hirth, and D.S. Gelles: “Effect of Loading Mode on the Fracture Toughness of a Reduced-Activation Ferritic/Martensitic Stainless Steel,” J. Nucl. Mater., 1994, 212–215, pp. 741–45.Google Scholar
  28. 28.
    Q. Ma and D.R. Clarke: “Stress Measurement in Single-Crystal and Polycrystalline Ceramics Using Their Optical Fluorescence,” J. Am. Ceram. Soc., 1993, 76, p. 1433.CrossRefGoogle Scholar
  29. 29.
    M. Lipkin and D.R. Clarke: “Measurement of the Stress in Oxide Scales Formed by Oxidation of Alumina-Forming Alloys,” Oxid. Met., 1996, 45, p. 267.CrossRefGoogle Scholar
  30. 30.
    C.H. Hsueh: “Modeling of Elastic Deformation of Multilayers Due to Residual Stresses and External Bending,” J. Appl. Phys., 2002, 91(12), pp. 9652–56.CrossRefGoogle Scholar
  31. 31.
    N.P. O’Dowd, C.F. Shih, and M.G. Stout: “Test Geometries for Measuring Interface Fracture Toughness,” Int. J. Solids Struct., 1992, 29(5), pp. 571–89.CrossRefGoogle Scholar
  32. 32.
    R.O. Ritchie et al.: “Mechanics and Mechanisms of Crack Growth at or Near Ceramic-Metal Interfaces: Interface Engineering Strategies for Promoting Toughness,” Mater. Sci. Eng., 1993, A166, pp. 221–35.Google Scholar
  33. 33.
    C.F. Shih and R.J. Asaro: “Elastic-Plastic Analysis of Cracks on Bimaterial Interfaces: Part 1—Small Scale Yielding,” J. Appl. Mech., 1988, 55, pp. 299–316.CrossRefGoogle Scholar
  34. 34.
    C.F. Shih, B. Moran, and T. Nakamura: “Energy Release Rate along a 3-D Crack Front in a Thermally Stressed Boyd,” Int. J. Fract., 1986, 30, pp. 79–102.Google Scholar
  35. 35.
    Z. Suo: “Singularities, Interfaces and Cracks in Dissimilar Anisotropic Media,” Proc. R. Soc. London, Ser. A, 1990, 427, pp. 331–58.Google Scholar
  36. 36.
    M. Bauccio, ed.: ASM Engineered Materials Reference Book, 2nd ed., ASM International, Materials Park, OH, 1994.Google Scholar
  37. 37.
    MatWeb Material Property Data: Alumina, Alpha Al2O3, http://www.matweb.com/SpecificMaterial. asp?bassnum=BA1A&group=General, accessed Oct 21, 2004.Google Scholar
  38. 38.
    M. Schutze: Fundamental Aspects of High Temperature Corrosion, D.A. Shores, R. Rapp, and P.Y. Hou, ed., Electro-Chemical Society, Pennington, NJ, 1997.Google Scholar
  39. 39.
    Y. Mitamura and Y. Wang: “Fracture Toughness of Single Crystal Alumina in Air and a Simulated Body Environment,” Biomed. Mater. Res., 1994, 28(7), pp. 813–17.CrossRefGoogle Scholar

Copyright information

© ASM International 2005

Authors and Affiliations

  • J. -A. J. Wang
    • 1
  • I. G. Wright
    • 1
  • M. J. Lance
    • 1
  • K. C. Liu
    • 1
  1. 1.Oak Ridge National LaboratoryOak Ridge

Personalised recommendations