Skip to main content
Log in

Production of titanium deposits by cold-gas dynamic spray: Numerical modeling and experimental characterization

  • Reviewed Papers
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Over the past five years, interest in cold-gas dynamics spraying (CGDS) has increased substantially. Considerable effort has been devoted to process development and optimization for such metals as copper and aluminium. This paper describes work undertaken to expand the understanding of the deposition of titanium by cold-spray methods. CGDS deposits have been produced from commercially pure titanium using room-temperature helium gas. The effect of different powder paticle size ranges, types of substrate, substrate preparation methods, and spray parameter conditions on powder deposition have been investigated. Microhardness testing of deposits was conducted, and their microstructures have been examined by scanning electron microscopy. Samples for pull-off bond-strength tests have been prepared from a number of the more promising sets of spray parameters and adhesive strengths determined. A one-dimensional numerical model of particle acceleration, employing isentropic gas flow behavior in the nozzle, has also been used to estimate particle exit velocities. This model explicitly addresses the dependence of the drag coefficient on gas compressibility and demonstrates its significance in terms of predicted particel velocities. By linking this model with the measured particle size distributions, estimates of particle velocity distributions at the nozzle exit plane have been computed. These allow an approximate value of the critical velocity for deposition of titanium to be made. Experimental observations on the microstructure and properties of the deposits are discussed in light of powder particle size and velocity distributions and the underlying physical and mechanical properties of the powders and substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

cross-section area of nozzle, m2

A * :

throat area of nozzle, m2

A p :

surface area of the particle, m2

Bi:

biot number

C d :

drag coefficient

C g :

specific heat of the gas, J kg−1 K−1

C p :

specific heat of the particle, J kg−1 K−1

d p :

diameter of the particle, m

h :

heat-transfer coefficient, W m−2 K−1

M :

mach number of the gas

M c :

relative Mach number of the particle

m p :

mass of the particle, kg

Nu:

Nusselt number

R :

gas constant, J kg−1 K−1

Re:

Reynolds number of the particle

Pr:

Prandtl number

T g :

temperature of the gas, K

T p :

temperature of the particle, K

t :

time. s

v g :

velocity of the gas, m s−1

v p :

velocity of the particle, m s−1

γ:

specific heat ratio of the gas

λg :

thermal conductivity of the gas, W m−1 K−1

λp :

thermal conductivity of the particle, W m−1 K−1

μg :

dynamic viscosity of the gas, kg m−1 s−1

ρg :

density of the gas, kg m−3

ρp :

density of the particle, kg m−3

References

  1. R. C. Dykhuizen and M.F. Smith, Gas Dynamic Principles of Cold spray. J. Therm. Spray Technol., 1998, 7(2), p 205–212

    Article  CAS  Google Scholar 

  2. T.H. Van Sttenkiste, J.R. Smith, R.E. Teets, J.J. Moleski, D.W. Gorkiewicz, R.P. Tison, D.R. Marantz, K.A. Kowalsky, W.L. Riggs II, P.H. Zajchowski, et al., Kinetic Spray Coatings, Surf. Coat. Technol., 1999, 111, p 62–71

    Article  Google Scholar 

  3. A.P. Alkimov, A.N. Papyrin, and V.F. Kosarev, A Method of Cold Gas-Dynamic Deposition. Dokl. Akad. Nauk SSSR, 1990, 315(5), p 1062–1065, in Russian.

    Google Scholar 

  4. T. Stoltenhoff, H. Kreye, H.J. Richter, and H. Assadi, Optimisation of the Cold Spray Process. Thermal Spray 2001: New Surfaces for a New Millemium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., May 28–30, 2001 (Singapore), ASM International, 2001, p 409–416.

    Google Scholar 

  5. C.-J. Li, W.-Y. Li, Y.-Y. Wang, and H. Fukanuma, Effect of Spray Angle on Deposition Characteristics in Cold Spraying, Thermal Spray 2003: Advancing the Science and Applying the Technology, B.R. Marple and C. Moreau, Ed., May 5–8, 2003, (Orlando, FL), ASM International, 2003, p 91–96.

    Google Scholar 

  6. E. Calla, D.G. McCartney, and P.H. Shipway, Deposition of Copper by CGDS: An Investigation of Dependence of Microstructure and Properties of the Deposits on The Spraying Conditions. Thermal Spray 2004: Advances in Technology and Application, May 10–12, 2004 (Osaka, Japan), ASM International, 2004, p 352–357

    Google Scholar 

  7. J. Karthikeyan, C.M. Kay, J. Lindeman, R.S. Lima, and C.C. Berndt, Cold Spray Processing of Titanium Powder, Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, Ed., May 8–11, 2000 (Montréal, Québec, Canada), ASM International, 2000, p 255–262

    Google Scholar 

  8. D. Zhang, P.H. Shipway, and D.G. McCartney, Cold Gas Dynamic Spraying of Aluminum: the Role of Substrate Characteristics in Deposit Formation. J. Therm. Spray Technol., 2005, 14(1), p 109–116

    Article  Google Scholar 

  9. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith, Particle Velocity and Deposition Efficiency in the Cold Spray Process. J. Therm. Spray Technol., 1999, 8(4), p 576–582

    Article  CAS  Google Scholar 

  10. R.C. McCune, A.N. Paryrin, J.N. Hall, W.L. Riggs II, and P.H. Zajchowski, An Exploration of the Cold-Gas Dynamic Spray Method for Several Material Systems, Advances in Thermal Spray Science & Technology, C.C. Berndt and S. Sampath, Ed., Sept 11–15, 1995, (Houston, TX), ASM International, 1995, p 1–5

    Google Scholar 

  11. R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, and S. Sampath, Impact of High Velocity Cold Spray Particles, J. Therm. Spray Technol., 1999, 8(4), p 559–564

    Article  CAS  Google Scholar 

  12. K. Sakaki, N. Huruhashi, K. Tamaki, and Y. Shimizu, Effect of Nozzle Geometry on Cld Spray Process, International Thermal Spray Conference, E. Lugscheider and C.C. Berndt, Ed., March 4–6, 2002 (Essen, Germany), DVS Deutscher Verband für Schweißen, 2002, p 385–389

    Google Scholar 

  13. J. Vlcek, L. Gimeno, H. Huber, and E. Lugscheider, A Systematic Approach to Material Eligibility for the Cold Spray Process, Thermal Spray 2003: Advancing the Science and Applying the Technology, B.R. Marple and C. Moreau, Ed., May 5–8, 2003 (Orlando, FL), ASM International, 2003, p 37–44

    Google Scholar 

  14. V.F. Kosarev, S.V. Klinkov, A.P. Alkhimov, and A.N. Papyrin, On Some Aspects of Gas Dynamics of the Cold Spray, J. Therm. Spray Technol., 2003, 12(2), p 265–281

    Article  Google Scholar 

  15. F. Gärtner, C. Borchers, T. Stoltenhoff, H. Kreye, and H. Assadi, Numerical and Microstructural Investigations of the Bonding Mechanisms in Cold Spraying, Thermal Spray 2003: Advancing the Science and Applying the Technology, B.R. Marple and C. Moreau, Ed., May 5–8, 2003 (Orlando, FL), ASM International, 2003, p 1–8

    Google Scholar 

  16. K. Sakaki, T. Tajima, H. Li, S. Shinkai, and Y. Shimizu, Influence of Substrate Conditions and Traverse Speed on Cold Sprayed Coatings, Thermal Spray 2004: Advances in Technology and Application, May 10–12, 2004 (Osaka, Japan), ASM International, 2004, p 358–362

    Google Scholar 

  17. A.O. Tokarev, Structure of Aluminium Powder Coatings Prepared by Cold Gas Dynamic Spraying, Metal Sci. Heat Treatment, 1996, 38, p 135–139

    Google Scholar 

  18. J. Vlcek, H. Huber, H. Voggenreiter, A. Fischer, E. Lugscheider, H. Hallén, and G. Pache, Kinetic Powder Compaction Applying the Cold Spray Process—A Study on Parameters, Thermal Spray 2001: New Surfaces for a New Millennium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., May 28–30, 2001 (Singapore). ASM International, 2001, p 417–422

    Google Scholar 

  19. M. Grujicic, C.L. Zhao, C. Tong, W.S. DeRosset, and D. Helfritch, Analysis of the Impact Velocity of Powder Particles in the Cold-Gas Dynamic-Spray Process, Mater. Sci. Eng., 2004, A368, p 222–230

    Article  CAS  Google Scholar 

  20. K. Sakaki and Y. Shimizu, Effect of the Increase in the Entrance Convergent Section Length of the Gun Nozzle, J. Therm. Spray Technol., 2001, 10(3), p 487–496

    Article  CAS  Google Scholar 

  21. T. Stoltenhoff, H. Kreye, and H.J. Richter, An Analysis of the Cold Spray Process and its Coatings, J. Therm Spray Technol., 2002, 11(4), p 542–550

    Article  CAS  Google Scholar 

  22. T. Stoltenhoff, J. Voyer, and H. Kreye, Cold Spraying—State of the Art and its Applicability, International Thermal Spray Conference, E. Lugscheider and C.C. Berndt, Ed., March 4–6, 2002 (Essen, Germany), DVS Deutscher Verband für Schweißen, 2002, p 366–374

    Google Scholar 

  23. P.H. Oosthinzen and W.E. Carscallen, Compressible Fluid Flow, McGraw-Hill, New York, 1997

    Google Scholar 

  24. R. Clift, J.R. Grace, and M.E. Weber, Bubbles, Drops and Particles, Academic Press, New York, 1978

    Google Scholar 

  25. A.B. Bailey and J. Hiatt, Sphere Drag Coefficients for a Broad Range of Mach and Reynolds Numbers, AIAA J., 1972, 10, p 1436–1440

    Google Scholar 

  26. M.J. Walsh, Drag Coefficient Equations for Small Particles in High-Speed Flows, AIAA J., 1975, 13, p 1526–1528

    Google Scholar 

  27. C.B. Henderson, Drag Coefficients of Spheres in Continuum and Rarefied Flows, AIAA J., 1976, 14, p 707–708

    Article  Google Scholar 

  28. S. Trans-Cong, M. Gay, and E.E. Michaelides, Drag Coefficients of Irre gularly Shaped Particles, Powder Technol. 2004, 139, p 21–32

    Article  CAS  Google Scholar 

  29. W. Hubert, J.R. Meyer, and D.S. Kleponis, Modelling the High Strain Rate Behaviour of Titanium Undergoing Ballistic Impact and Penetration, Int. J. Impact Eng., 2001, 26, p 509–521

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The original version of this paper was published in the CD ROM Thermal Spray Commects: Explore Its Surfacing Potential, International Thermal Spray Conference, sponsored by DVS, ASM International, and HW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmbH, Düsseldorf, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marrocco, T., McCartney, D.G., Shipway, P.H. et al. Production of titanium deposits by cold-gas dynamic spray: Numerical modeling and experimental characterization. J Therm Spray Tech 15, 263–272 (2006). https://doi.org/10.1361/105996306X108219

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105996306X108219

Keywords

Navigation