Skip to main content
Log in

In situ measurement system for deformation and solidification phenomena of yttria-stabilized zirconia droplets impinging on quartz glass substrate under plasma-spraying conditions

  • Reviewed Papers
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The authors have developed an in situ measurement system for precise one-to-one correlation between splat morphology and thermal history during particle impingement on a temperature-controlled substrate inside an airtight chamber under plasma-spraying conditions. The system has made it possible to collect about 10 single particles successively within a 10 s time frame, and to correlate exactly the relationship between the size, the temperature, and the impacting velocity of each droplet, and the morphology of the splats. The most striking finding is that a part of the yttria-stabilized zirconia (YSZ) droplets may be actually in supercooled condition before impinging, although a marked difference was not found in the splat morphology. In addition, as secondary results, we could evaluate the viscosity, μ, of YSZ, and the thermal contact resistance between YSZ splat and the quartz glass substrate as μ [Pa · s]=0.0037 exp (6110/T) and 3 × 10−6-4×10−5 m2 K/W, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, Vol 296 (No. 5566), 2002, p 280–284

    Article  CAS  Google Scholar 

  2. F. Gitzhofer, M. Boulos, J. Heberlein, R. Henne, T. Ishigaki, and T. Yoshida, Integrated Fabrication Processes for Solid-Oxide Fuel Cells Using Thermal Plasma Spray Technology, MRS Bull., Vol 25 (No. 7), 2000, p 38–42

    CAS  Google Scholar 

  3. T. Yoshida, Some Issues for the Development of Spraying Technology, Mater. Japan, Vol 40 (No. 4), 2001, p 322–325 (in Japanese)

    CAS  Google Scholar 

  4. J.R. Fincke, C.L. Jeffery, and S.B. Englert, In-Flight Measurement of Particle-Size and Temperature, J. Phys. E: Sci. Instrum., Vol 21 (No. 4), 1988, p 367–370

    Article  CAS  Google Scholar 

  5. T. Sakuta and M.I. Boulos, Novel-Approach for Particle-Velocity and Size Measurement under Plasma Conditions, Rev. Sci. Instrum., Vol 59 (No. 2), 1988, p 285–291

    Article  Google Scholar 

  6. J.R. Fincke, D.C. Haggard, and W.D. Swank, Particle Temperature Measurement in the Thermal Spray Process, J. Therm. Spray Technol., Vol 10 (No. 2), 2001, p 255–266

    Article  Google Scholar 

  7. M. Vardelle, A. Vardelle, P. Fauchais, and C. Moreau, Pyrometer System for Monitoring the Particle Impact on a Substrate during a Plasma Spray Process, Meas. Sci. Technol., Vol 5 (No. 3), 1994, p 205–212

    Article  CAS  Google Scholar 

  8. M. Vardelle, A. Vardelle, A.C. Leger, P. Fauchais, and D. Gobin, Influence of Particle Parameters at Impact on Splat Formation and Solidification in Plasma Spraying Processes, J. Therm. Spray Technol., Vol 4 (No. 1), 1995, p 50–58

    Article  CAS  Google Scholar 

  9. P. Gougeon and C. Moreau, Simultaneous Independent Measurement of Splat Diameter and Cooling Time during Impact on a Substrate of Plasma-Sprayed Molybdenum Particles, J. Therm. Spray Technol., Vol 10 (No. 1), 2001, p 76–82

    Article  CAS  Google Scholar 

  10. C. Moreau, P. Cielo, and M. Lamontagne, Flattening and Solidification of Thermally Sprayed Particles, J. Therm. Spray Technol., Vol 1 (No. 4), 1992, p 317–324.

    Article  CAS  Google Scholar 

  11. G. Trapaga and J. Szekely, Mathematical-Modeling of the Isothermal Impingement of Liquid Droplets in Spraying Processes, Metall. Trans. B, Vol 22 (No. 6), 1991, p 901–914

    Article  Google Scholar 

  12. M. Pasandideh-Fard, Y.M. Qiao, S. Chandra, and J. Mostaghimi, Capillary Effects during Droplet Impact on a Solid Surface, Phys. Fluids, Vol 8 (No. 3), 1996, p 650–659

    Article  CAS  Google Scholar 

  13. M. Bussmann, S. Chandra, and J. Mostaghimi, Modeling the Splash of a Droplet Impacting a Solid Surface, Phys. Fluids, Vol 12 (No. 12), 2000, p 3121–3132

    Article  CAS  Google Scholar 

  14. Y.K. Chae, J. Mostaghimi, and T. Yoshida, Deformation and Solidification Process of a Super-Cooled Droplet Impacting on the Substrate Under Plasma Spraying Conditions, Sci. Technol. Adv. Mater., Vol 1 (No. 3), 2000, p 147–156

    Article  CAS  Google Scholar 

  15. J.P. Delplanque and R.H. Rangel, An Improved Model for Droplet Solidification on a Flat Surface, J. Mater. Sci., Vol 32 (No. 6), 1997, p 1519–1530

    Article  CAS  Google Scholar 

  16. V.V. Sobolev, J.M. Guilemany, and A.J. Martin, Investigation of Droplet Flattening during Thermal Spraying, Surf. Coat. Technol., Vol 89, 1997, p 82–89

    Article  CAS  Google Scholar 

  17. Y.P. Wan, H. Zhang, X.Y. Jiang, S. Sampath, and V. Prasad, Role of Solidification, Substrate Temperature and Reynolds Number on Droplet Spreading in Thermal Spray Deposition: Measurements and Modeling, Trans. ASME, Vol 123, 2001, p 382–389

    Article  CAS  Google Scholar 

  18. H. Zhang, X.Y. Wang, L.L. Zheng, and X.Y. Jiang, Studies of Splat Molphology and Rapid Solidification during Thermal Spraying, Int. J. Heat Mass Transfer, Vol 44, 2001, p 4579–4592

    Article  CAS  Google Scholar 

  19. C. Moreau, P. Cielo, M. Lamontagne, S. Dallaire, and M. Vardelle, Impacting Particle Temperature Monitoring during Plasma Spray Deposition, Meas. Sci. Technol., Vol 1 (No. 8), 1990, p 807–814

    Article  CAS  Google Scholar 

  20. K. Shinoda, P. Han, and T. Yoshida, “The Microstructure of YSZ Splats Deposited by Hybrid Plasma Spraying,” Proceedings of the 15th International Symposium on Plasma Chemistry (Orleans, France), Vol 4, A. Bouchoule, et al., Ed., 2001, p 2661–2666

  21. A. Savitzky and M.J.E. Golay, Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Anal. Chem., Vol 36 (No. 8), 1964, p 1627–1639

    Article  CAS  Google Scholar 

  22. M.W.J. Chase, Ed., NIST-JANAF Thermochemical Tables, 4th ed., Journal of Physical and Chemical Reference Data, Vol 9, American Chemical Society and American Institute of Physics for the National Institute of Standards and Technology, 1998

  23. L.A. Dombrovsky and M.B. Ignatiev, An Estimate of the Temperature of Semitransparent Oxide Particles in Thermal Spraying, Heat Transfer Eng., Vol 24 (No. 2), 2003, p 60–68

    Article  CAS  Google Scholar 

  24. S. Fantassi, M. Vardelle, A. Vardelle, and P. Fauchais, Influence of the Velocity of Plasma-Sprayed Particles on Splat Formation, J. Thermal Spray Technol., Vol 2 (No. 4), 1993, p 379–384

    Article  CAS  Google Scholar 

  25. T. Yoshida, T. Okada, H. Hamatani, and H. Kumaoka, Integrated Fabrication Process for Solid Oxide Fuel Cells Using Novel Plasma Spraying, Plasma Sources Sci. Technol., Vol 1 (No. 3), 1992, p 195–201

    Article  CAS  Google Scholar 

  26. P. Kozakevitch, Viscosite et elements structuraux des aluminosilicates fondus: laitiers CaO-Al2O3-SiO2 entre 1600 et 2100 C, Rev. Met., Vol 57, 1960, p 149–160 (in French)

    CAS  Google Scholar 

  27. R. Rossin, J. Bersan, and G. Urbain, Etude de la viscosite de laitiers liquides appartenant au systeme ternaire: SiO2-Al2O3-CaO, Rev. Hautes Temper. Refract., Vol 1, 1964, p 159–170 (in French)

    CAS  Google Scholar 

  28. V.P. Elyutin, V.I. Kostikov, B.S. Mitin, and Y.A. Nagibin, Measurement of Viscosity of Aluminum Oxide, Zh. Fiz. Khim., Vol 43, 1969, p 579–583 (in Russian)

    CAS  Google Scholar 

  29. J.L. Bates, C.E. McNeilly, and J.J. Rasmussen, Properties of Molten Ceramics, Ceramics in Severe Environments: Proceedings, Materials Science Research, W.W. Kriegel and H.I. Palmour, Ed., Plenum Press, 1971, p 11–26

  30. R.A. Blomquist, J.K. Fink, and L. Leibowitz, Viscosity of Molten Alumina, Am. Ceram. Soc. Bull., Vol 57 (No. 5), 1978, p 522

    CAS  Google Scholar 

  31. G. Urbain, Viscosite de l’alumine liquide (Viscosity of Liquid Alumina), Rev. Int. Hautes Temp. Refract., Vol 19 (No. 1), 1982, p 55–57 (in French)

    CAS  Google Scholar 

  32. F. Sudreau and G. Cognet, Corium Viscosity Modelling Above Liquidus Temperature, Nucl. Eng. Des., Vol 178, 1997, p 269–277

    Article  CAS  Google Scholar 

  33. A.V. Grosse, The Empirical Relationship between the Activation Energy Viscosity of Liquid Metals and Their Melting Points, J. Inorg. Nucl. Chem., Vol 255, p 317–318

  34. M. Hirai, Estimation of Viscosities of Liquid Alloys, ISIJ Int., Vol 33 (No. 2), p 251–258

Download references

Author information

Authors and Affiliations

Authors

Additional information

The original version of this paper was published as part of the DVS Proceedings: “Thermal Spray Solutions: Advances in Technology and Application,” International Thermal Spray Conference, Osaka, Japan, 10–12 May 2004, CD-Rom, DVS-Verlag GmbH, Düsseldorf, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shinoda, K., Kojima, Y. & Yoshida, T. In situ measurement system for deformation and solidification phenomena of yttria-stabilized zirconia droplets impinging on quartz glass substrate under plasma-spraying conditions. J Therm Spray Tech 14, 511–517 (2005). https://doi.org/10.1361/105996305X76531

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105996305X76531

Keywords

Navigation