Skip to main content
Log in

A systematic approach to material eligibility for the cold-spray process

  • Reviewed Papers
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

This article represents an effort to systematize an understanding of the cold-spray process and the suitability of materials for such a process. The evaluation is based on a brief analysis of the powder particle impact and literature research concerning shock-compression phenomena in matter and related physical effects, such as impact heating and dynamic yielding. The finite-element modeling (FEM) allows the estimation of the maximum impact pressures, the deformation rates, and the deformation kinetics during impact. The calculations can be verified experimentally and are supported by the published data. From a brief analysis of the equations of state applied to shock compression, key material parameters are derived and investigated. A parameterization of physical properties and correlation with the crystal types endeavors to provide a qualitative ranking of material suitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Vlcek, H. Huber, H. Voggenreiter, and E. Lugscheider, “Melting Upon Particle Impact in the Cold Spray Process,” presented at Materials Week 2002, International Congress on Advanced Materials, Their Processes and Applications, Deutsche Gesellschaff fur Materialkunde (DGM) (Munich, Germany), Sept 2002

    Google Scholar 

  2. R.C. McCune, A.N. Papyrin, J.N. Hall, W.L. Riggs, and P.H. Zalchowski, An Exploration of the Cold Gas-Dynamic Spray Method for Several Material Systems, Advances in Thermal Spray Science & Technology, Sept 11–15, 1995 (Houston, TX), C.C. Berndt and S. Sampath, Ed., ASM International, 1995, p 1–5

  3. R.C. Dykhuizen, M.F. Smith, D.L. Gilmore, and R.A. Neiser, Impact of High Velocity Cold Spray Particles, J. Thermal Spray Technol., Vol 8 (No. 4), 1999, p 559–564

    Article  CAS  Google Scholar 

  4. T. Stoltenhoff, H. Kreye, H.J. Richter, and H. Assadi, Optimization of the Cold Spray Process, Thermal Spray 2001: New Surfaces for A Millennium, May 28–30, 2001 (Singapore), C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., ASM International, 2001, p 409–416

  5. F. Gärtner, C. Borchers, T. Stoltenhoff, H. Kreye, and H. Assadi, Numerical and Microstructural Investigations of the Bonding Mechanism in Cold Spraying. Thermal Spray 2003: Advancing the Science and Applying the Technology, May 5–8, 2003 (Orlando, FL), C. Moreau and B. Marple, Ed., ASM International, 2003, Vol 1, p 1–8

  6. D. Raybould, The Cold Welding of Powders by Dynamic Compaction, Int. J. Powder Metall. Powder Technol., Vol 16 (No. 1), 1980, p 9–19

    CAS  Google Scholar 

  7. D. Raybould, D.G. Morris, and G.A. Cooper, A New Powder Metallurgy Method, J. Mater. Sci., (No. 14), 1979, p 2523–2527

  8. J. Vlcek, H. Huber, H. Voggenreiter, A. Fischer, H. Hallén, G. Pache, and E. Lugscheider, Kinetic Powder Compaction Applying the Cold Spray Process: A Study on Parameters, Thermal Spray 2001: New Surfaces for a Millennium, May 28–30, 2001 (Singapore), C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., ASM International, 2001, p 417–422

  9. A.P. Alkimov, V.F. Kosarev, and A.N. Papyrin, A Method of Cold Gas-Dynamic Deposition, Sov. Phys. Dokl., Vol 35 (No. 12), 1991, p 1047–1049

    ADS  Google Scholar 

  10. A.P. Alkimov, A.I. Gudilov, V.F. Kosarev, and N.I. Nesterovich, Specific Features of Microparticle Deformation upon Impact on a Rigid Barrier, J. Appl. Mech. Tech. Phys., Vol 41 (No. 1), 2000, p 188–192

    Article  MathSciNet  Google Scholar 

  11. J. Vlcek, H. Huber, H. Voggenreiter, A. Fischer, E. Lugscheider, H. Hallén, and G. Pache, “Characteristics of Kinetic Powder Compaction with the Cold Spray Process,” presented at Materials Week 2001, International Congress on Advanced Materials, Their Processes and Applications, Deutsche Gesellschaff fur Materialkunde (DGM) (Munich, Germany), Oct 2001

    Google Scholar 

  12. J.M. Walsh, R.G. Shreffler, and F.J. Willig, Limiting Conditions for Jet Formation in High Velocity Collisions, J. Appl. Phys., Vol 24 (No. 3), 1953, p 349–359

    Article  ADS  Google Scholar 

  13. H. Dell and G. Oberhofer, “Simulation zur Deformation eines sphärischen Pulverpartikels beim Kaltkinetischen Kompaktieren” (“Simulation of the Deformation of a Spherical Particle in the Cold Spray Process”), Report of MATFEM Engineering, Munich, Dec 2000 (in German)

  14. R. Prümmer, Explosivverdichtung pulvriger Substanzen, Springer Verlag, 1987 (in German).

  15. J.A. Zukas, High Velocity Impact Dynamics, John Wiley & Sons, 1990

  16. J.R. Asay and M. Shahinpoor, High Pressure Shock Compression of Solids, Springer Verlag, 1993, p 7–113

  17. R.J. Brejcha and S.W. McGee, Compaction with a 0.38 cal. Blank, Am Machinist, Vol 106, 1962, p 63–65

    Google Scholar 

  18. J.M. Walsh and R.H. Christian, Equation of State of Metals from Shock Wave Measurements, Phys. Rev., Vol 97 (No. 6), 1955, p 1544–1556

    Article  ADS  CAS  Google Scholar 

  19. R.G. McQueen, S.P. Marsh, J.W. Taylor, J.N. Taylor, and W.J. Carter, The Equation of State of Solids from Shock Wave Studies, High Velocity Impact Phenomena, R. Kinslow, Ed., Academic Press, 1970, p 239–417

  20. Smithells Metals Reference Book, 7th ed., E.A. Brandes and G.B. Brook, Ed., Butterworth Heinemann, Oxford, 1992

    Google Scholar 

  21. G. Welsch, R. Boyer, and E.W. Collings, Materials Properties Handbook: Titanium Alloys, 2nd ed., ASM International, 1998, p 483–636

  22. Guide to Engineering Materials 2001, Adv. Mater. Proc., Vol 158 (No. 6), 2000, p 29–152

    Google Scholar 

  23. H.H. Weigand and H.G. Dorst, Microstructural Changes in TiAl6V4 Alloy), DEW Technical Reports, Vol 1 (No. 3), 1963, p 108–113 (in German)

    Google Scholar 

  24. H. Kuchling, Taschenbuch der Physik (Pocketbook of Physics), Verlag Harri Deutsch, Thun/Frankfurt, 1989 (in German)

    Google Scholar 

  25. Appendix F: Tabulation of Shock Wave Parameters, Shock Waves and High Strain Rate Phenomena in Metals, MA. Meyer and L.E. Murr, Ed., Plenum Press, 1981, p 1061ff

  26. H. Lippmann and O. Mahrenholtz, Plastomechanik der Umformung metallischer Werkstoffe (Plastomechanics in Forming of Metallic Materials), Springer Verlag, 1967 (in German)

  27. Y.V. Prasad and S. Sasidhara, Hot Working Guide, A Compendium of Processing Maps, ASM International, 1997, p 1–24

  28. W. Schatt and H. Worch, Ed., Werkstoffwissenschaften Material Science), Deutscher Verlag für Grundstoffindustrie, Stuttgart, 1996 (in German)

    Google Scholar 

  29. H.J. Frost and MF, Ashby, Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, 1982

    Google Scholar 

  30. B. Lemcke and D. Raybould, Method of Compacting Powder, U.S. Patent 4,255,374 March 10, 1981

  31. H. Kreye, F. Gärtner, and H.J. Richter, “High Velocity Oxy-Fuel Flame Spraying: State of the Art, New Developments and Alternatives,” presented at Sixth Colloquium on High Velocity Oxygen Fuel Spraying (Erding, Germany), Gemeinschaft Thermisches Spritzen e.V. 2003

  32. J. Vlcek, H. Huber, M. Englhart, D.P. Jonke, and F. Gammel, “Where Are the Limits of Cold Spray?: Ceramic Deposition,” presented at Cold Spray New Horizons in Surfacing Technology (Albuquerque, NM), Sept 2002

Download references

Author information

Authors and Affiliations

Authors

Additional information

The original version of this article was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Science and Applying the Technology, International Thermal Spray Conference (Orlando, FL), May 5–8, 2003, Basil R. Marple and Christian Moreau, Eds., ASM International, 2003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlcek, J., Gimeno, L., Huber, H. et al. A systematic approach to material eligibility for the cold-spray process. J Therm Spray Tech 14, 125–133 (2005). https://doi.org/10.1361/10599630522738

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/10599630522738

Keywords

Navigation