Skip to main content

Elastic modulus measurements via laser-ultrasonic and knoop indentation techniques in thermally sprayed coatings


Nondestructive techniques for evaluating and characterizing coatings were extensively demanded by the thermal spray community; nonetheless, few results have been produced in practice due to difficulties in analyzing the complex structure of thermal spray coatings. Of particular interest is knowledge of the elastic modulus values and Poisson’s ratios, which are very important when seeking to understand and/or model the mechanical behavior or to develop life prediction models of thermal spray coatings used in various applications (e.g., wear, fatigue, and high temperatures). In the current study, two techniques, laser-ultrasonics and Knoop indentation, were used to determine the elastic modulus of thermal spray coatings. Laser-ultrasonics is a noncontact and nondestructive evaluation method that uses lasers to generate and detect ultrasound. Ultrasonic velocities in a material are directly related to its elastic modulus value. The Knoop indentation technique, which has been widely used as a method for determining elastic modulus values, was used to compare and validate the measurements of the laser-ultrasonic technique. The determination of elastic modulus values via the Knoop indentation technique is based on the measurement of elastic recovery of the dimensions of the Knoop indentation impression. The approach used in the current study was to focus on evaluating the elastic modulus of very uniform, dense, and near-isotropic titania and WC-Co thermal spray coatings using these two techniques. Four different coatings were evaluated: two titania coatings produced by air plasma spray (APS) and high-velocity oxyfuel (HVOF) and two types of WC-Co coatings, conventional and multimodal (nanostructured and microsized particles), deposited by HVOF.

This is a preview of subscription content, access via your institution.


  1. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, John Wiley & Sons, Chichester, West Sussex, England, 1995

    Google Scholar 

  2. R. McPherson, A Review of Microstructure and Properties of Plasma Sprayed Ceramic Coatings, Surf. Coat. Technol., Vol 39/40, 1989, p 173–181

    Article  Google Scholar 

  3. R. McPherson and B.V. Shaffer, Interlamellar Contact Within Plasma-Sprayed Coatings, Thin Solid Films, Vol 97, 1982, p 201–204

    Article  CAS  Google Scholar 

  4. R. McPherson, The Relationship Between the Mechanism of Formation, Microstructure and Properties of Plasma-Sprayed Coatings, Thin Solid Films, Vol 83, 1981, p 297–310

    Article  CAS  Google Scholar 

  5. R. McPherson, A Model for the Thermal Conductivity of Plasma-Sprayed Ceramic Coatings, Thin Solid Films, Vol 112, 1984, p 89–95

    Article  CAS  Google Scholar 

  6. J. Ilavsky, A.J. Allen, G.G. Long, and S. Krueger, Influence of Spray Angle on the Pore and Crack Microstructure of Plasma-Sprayed Deposits, J. Am. Ceram. Soc., Vol 80 (No. 3), 1997, p 733–742

    Article  CAS  Google Scholar 

  7. S.H. Leigh and C.C. Berndt, Quantitative Evaluation of Void Distributions Within a Plasma-Sprayed Ceramic, J. Am. Ceram. Soc., Vol 82 (No. 1), 1999, p 17–21

    Article  CAS  Google Scholar 

  8. T. Nakamura, G. Qian, and C.C. Berndt, Effects of Pores on Mechanical Properties of Plasma-Sprayed Ceramic Coatings, J. Am. Ceram. Soc., Vol 83 (No. 3), 2000, p 578–584

    Article  CAS  Google Scholar 

  9. S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, Vol 200, 1991, p 49–66

    Article  CAS  Google Scholar 

  10. S.H. Leigh, C.K. Lin, and C.C. Berndt, Elastic Response of Thermal Spray Deposits Under Indentation Tests, J. Am. Ceram. Soc., Vol 80 (No. 8), 1997, p 2093–2099

    Article  CAS  Google Scholar 

  11. R.S. Lima and B.R. Marple, High Weibull Modulus HVOF Titania Coatings, J. Thermal Spray Technol., Vol 12 (No. 2), 2003, p 240–249

    Article  CAS  Google Scholar 

  12. R.S. Lima and B.R. Marple, Optimized High Velocity Oxy-Fuel Titania Coatings, J. Thermal Spray Technol., Vol 12 (No. 3), 2003, p 360–369

    Article  CAS  Google Scholar 

  13. R.S. Lima and B.R. Marple, Comparative Study of HVOF and APS Titania Coatings, Proceedings from the First International Surface Engineering Congress and the 13th IFHTSE Congress, N. Dahotre, J.O. Iroh, D. Herring, S. Midea, and H. Kopech, Ed., ASM International, 2003, p 515–519

  14. D.B. Marshall, T. Noma, and A.G. Evans, A Simple Method for Determining Elastic-Modulus-to-Hardness Ratio using Knoop Indentation Measurements, J. Am. Ceram. Soc., Vol 65 (No. 10), 1982, p C-175–176

  15. S. Parthasarathi, B.R. Tittmann, K. Sampath, and E.J. Onesto, Ultrasonic Characterization of Elastic Anisotropy in Plasma-Sprayed Alumina Coatings, J. Thermal Spray Technol., Vol 4 (No. 4), 1995, p 367–373

    CAS  Google Scholar 

  16. G. Rosa, P. Psyllaki, R. Oltra, T. Montesin, C. Coddet, and S. Costil, Laser Ultrasonic Testing for Estimation of Adhesion of Al2O3 Plasma Sprayed Coatings, Surf. Eng., Vol 17 (No. 4), 2001, p 332–338

    Article  CAS  Google Scholar 

  17. X.Q. Ma, Y. Mizutani, and M. Takemoto, Laser-Induced Surface Acoustic Waves for Evaluation of Elastic Stiffness of Plasma Sprayed Materials, J. Mater. Sci., Vol 36, 2001, p 5633–5641

    Article  CAS  Google Scholar 

  18. D. Schneider, T. Schwarz, H.P. Buchkremer, and D. Stover, Non-Destructive Characterization of Plasma-Sprayed ZrO2 Coatings, Thin Solid Films, Vol 224, 1993, p 177–183

    Article  Google Scholar 

  19. D. Schneider and B. Schultrich, Elastic Modulus: A Suitable Quantity for Characterization of Thin Films, Surf. Coat. Technol., Vol 98, 1998, p 962–970

    Article  CAS  Google Scholar 

  20. M. Viens, D. Drolet, A. Blouin, J. P. Monchalin, C. Moreau, Nondestructive Characterization of Plasma Sprayed Coatings by Laser Ultrasonics, Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, Ed., Oct 7–11, 1996 (Cincinnati, OH), ASM International, 1996, p 947–951

  21. D.N. Boccaccini and A.R. Boccaccini, Dependence of Ultrasonic Velocity on Porosity and Pore Shape in Sintered Materials, J. Nondestruct. Eval., Vol 16 (No. 4), 1997, p 187–192

    Article  Google Scholar 

  22. M. Asmani, C. Kermel, A. Leriche, and M. Ourak, Influence of Porosity on Young’s Modulus and Poisson’s Ratio in Alumina Ceramics, J. Eur. Ceram. Soc., Vol 21, 2001, p 1081–1086

    Article  CAS  Google Scholar 

  23. M.E. Browne, Physics for Engineering and Science, McGraw-Hill, 1999

  24. E. Schreiber, O.L. Anderson, and N. Soga, Elastic Constants and Their Measurement, McGraw-Hill, 1973

  25. Y.M. Liu, T.E. Mitchell, and H.N.G. Wadley, Anitropic Damage Evolution in Unidirectional Fiber Reinforced Ceramics, Acta Mater., Vol 45 (No. 10), 1997, p 3981–3992

    Article  CAS  Google Scholar 

  26. Q.B. Zhou, S.Y. Zhang, and Y.K. Lu, Acoustic Anisotropy of Piezoelectric PbB4O7 Crystals Studied by Laser Ultrasonics, Mater. Sci. Eng., B, Vol 83, 2001, p 249–253

    Article  Google Scholar 

  27. M.A. Camerucci, G. Urretavizcaya, and A.L. Cavalieri, Mechanical Behavior of Cordierite and Cordierite-Mullite Materials Evaluated by Indentation Techniques, J. Eur. Ceram. Soc., Vol 21, 2001, p 1195–1204

    Article  CAS  Google Scholar 

  28. J. Gong, Z. Zhao, Y. Yang, Z. Guan, and H. Miao, Statistical Variability in the Indentation Toughness of TiCN Particle Reinforced Al2O3 Composite, Mater. Lett., Vol. 49, 2001, p 357–360

    Article  CAS  Google Scholar 

  29. H.J. Kim and Y.G. Kweon, Elastic Modulus of Plasma-Sprayed Coatings Determined by Indentation and Bend Tests, Thin Solid Films, Vol 342, 1999, p 201–206

    Article  CAS  Google Scholar 

  30. J. Li and C. Ding, Determining Microhardness and Elastic Modulus of Plasma-Sprayed Cr3C2-NiCr Coatings Using Knoop Indentation Testing, Surf. Coat. Technol., Vol 135, 2001, p 229–237

    Article  CAS  Google Scholar 

  31. D. Zhu and R.A. Miller, Thermal Conductivity and Elastic Modulus Evolution of Thermal Barrier Coatings Under High Heat Flux Conditions, J. Thermal Spray Technol., Vol 9 (No. 2), 2000, p 175–180

    Article  CAS  Google Scholar 

  32. S.W.K. Kweh, K.A. Khor, and P. Cheang, Plasma-Sprayed Hydroxyapatite (HA) Coatings with Flame-Spheroidized Feedstock: Micro-structure and Mechanical Properties, Biomaterials, Vol 21, 2000, p 1223–1234

    Article  PubMed  CAS  Google Scholar 

  33. B.R. Marple, J. Voyer, J.F. Bisson, and C. Moreau, Thermal Spraying of Nanostructured Cermet Coatings, J. Mater. Process. Technol., Vol 117, 2001, p 418–423

    Article  CAS  Google Scholar 

  34. MatWeb-Material Property Data Home Page, (accessed Sept 24, 2002)

  35. J.C. Anderson, K.D. Leaver, R.D. Rawlings, and J.M. Alexander, Materials Science, 4th ed., Chapman & Hall, 1991

Download references

Author information

Authors and Affiliations


Additional information

The original version of this article was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Science and Applying the Technology, International Thermal Spray Conference (Orlando, FL), 5–8 May, 2003, Basil R. Marple and Christian Moreau, Eds., ASM International, 2003.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lima, R.S., Kruger, S.E., Lamouche, G. et al. Elastic modulus measurements via laser-ultrasonic and knoop indentation techniques in thermally sprayed coatings. J Therm Spray Tech 14, 52–60 (2005).

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: