Skip to main content
Log in

Simultaneous independent measurement of splat diameter and cooling time during impact on a substrate of plasma-sprayed molybdenum particles

  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In thermal spray processes, the coating structure is the result of flattening and cooling of molten droplets on the substrate. The study of the cooling time and evolution of the splat size during impact is then of the highest importance to understand the influence of the spray parameters and substrate characteristics on the coating structure. Measurement of particle temperature during impact requires the use of a high-speed two-color pyrometer to collect the thermal emission of the particle during flattening. Simultaneous measurement of the splat size with this pyrometer is difficult since the size of the particle can change as it cools down. To measure the splat size independently, a new measurement technique has been developed. In this technique, the splat size is measured from the attenuation of the radiation of a laser beam illuminating the particle during impact. Results are presented for plasma-sprayed molybdenum particles impacting on a glass substrate at room temperature. It is shown that the molybdenum splat reaches its maximum extent about 2 µs after the impact. In this work, we show that this increase of the splat surface is followed by a phase during which the splat size decreases significantly during 2 to 3 µs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Madejski: Int. J. Heat Mass Transfer, 1976, vol. 19, pp. 1009–13.

    Article  Google Scholar 

  2. J. Madejski: Int. J. Heat Mass Transfer, 1983, vol. 26 (7), pp. 1095–98.

    Article  Google Scholar 

  3. G. Trapaga, E. F. Matthys, J. J. Valencia, and J. Szekely: Metall. Trans. B, 1992, vol. 23B, pp. 701–18.

    CAS  Google Scholar 

  4. T. Watanabe, I. Kuribayashi, T. Honda, and A. Kanzawa: Chem. Eng. Sci., 1992, vol. 47 (12), pp. 3059–65.

    Article  CAS  Google Scholar 

  5. M. Bertagnolli, M. Marchese, and G. Jacucci: J. Thermal Spray Technol., 1995, vol. 4 (1), pp. 41–49.

    Article  CAS  Google Scholar 

  6. H. Liu, E. J. Lavernia, and R. H. Rangel: J. Phys. D: Appl. Phys., 1993, vol. 26, pp. 1900–08.

    Article  Google Scholar 

  7. A. C. Léger, M. Vardelle, A. Vardelle, P. Fauchais, S. Sampath, C. C. Berndt, and H. Herman: in Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, ed., ASM International, Materials Park, OH, 1996, pp. 623–28.

    Google Scholar 

  8. M. Pasandideh-Fard and J. Mostaghimi: in Thermal Spray: Practical Solutions for Engineering Problems, C. C. Berndt, ed., ASM International, Materials Park, OH, 1996, pp. 637–46.

    Google Scholar 

  9. H. Fukanuma: in Thermal Spray: Practical Solutions for Engineering Problems, C. C. Berndt, ed., ASM International, Materials Park, OH, 1996, pp. 647–56.

    Google Scholar 

  10. A. C. Léger, M. Vardelle, A. Vardelle, B. Dussoubs, and P. Fauchais: in Thermal Spray Science and Technology, C. C. Berndt and S. Sampath, eds., ASM International, Materials Park, OH, 1995, pp. 169–74.

    Google Scholar 

  11. M. Vardelle, A. Vardelle, A. C. Léger, and P. Fauchais: in Thermal Spray Industrial Applications, C. C. Berndt and S. Sampath, eds., ASM International, Materials Park, OH, 1994, pp. 555–62.

    Google Scholar 

  12. C. Moreau, P. Cielo, and M. Lamontagne: J. Thermal Spray Technol., 1992, vol. 1 (4), pp. 317–23.

    Article  CAS  Google Scholar 

  13. C. Moreau, P. Gougeon, and M. Lamontagne: J. Thermal Spray Technol., 1995, vol. 4 (4), pp. 25–33.

    Article  CAS  Google Scholar 

  14. L. Bianchi, F. Blein, P. Lucchese, M. Vardelle, A. Vardelle, and P. Fauchais: in Thermal Spray Industrial Applications, C. C. Berndt and S. Sampath, eds., ASM International, Materials Park, OH, 1994, pp. 569–74.

    Google Scholar 

  15. M. Fukomoto, S. Katoh, and I. Okane: in Thermal Spraying—Current Status and Future Trends, Akira Ohmori, ed., High Temperature Society of Japan, Osaka, 1995, pp. 353–58.

    Google Scholar 

  16. Y. Huang, M. Ohwatari, and M. Fukomoto: in The Role of Welding Science and Technology in the 21st Century, M. Ushio, ed., Japan Welding Society, Nagoya, 1996, pp. 731–36.

    Google Scholar 

  17. C. Moreau, P. Cielo, M. Lamontagne, S. Dallaire, and M. Vardelle: Meas. Sci. Technol., 1990, vol. 1, pp. 807–14.

    Article  CAS  Google Scholar 

  18. M. Vardelle, A. Vardelle, P. Fauchais, and C. Moreau: Meas. Sci. Technol., 1994, vol. 5, pp. 205–12.

    Article  CAS  Google Scholar 

  19. C. Moreau, P. Gougeon, and M. Lamontagne: in Thermal Spraying—Current Status and Future Trends, Akira Ohmori, ed., High Temperature Society of Japan, Osaka, 1995, pp. 347–51.

    Google Scholar 

  20. P. Gougeon, C. Moreau, V. Lacasse, M. Lamontagne, I. Powell, and A. Bewsher: in Advanced Processing Techniques—Particulate Materials, Metal Powder Industries Federation, Princeton, NJ, 1994, vol. 6, pp. 199–210.

    Google Scholar 

  21. C. Moreau, P. Gougeon, M. Lamontagne, V. Lacasse, G. Vaudreuil, and P. Cielo: in Thermal Spray Industrial Applications, C. C. Berndt and S. Sampath, eds., ASM International, Materials Park, OH, 1994, pp. 431–37

    Google Scholar 

  22. P. Gougeon and C. Moreau: J. Thermal Spray Technol., 1993, vol. 2 (3), pp. 229–33.

    Article  CAS  Google Scholar 

  23. Metals Handbook, 8th ed., vol. 1, Properties and Selection of Metals, T. Lyman, ed., ASM, Metals Park, OH, 1961, p. 1216.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gougeon, P., Moreau, C. Simultaneous independent measurement of splat diameter and cooling time during impact on a substrate of plasma-sprayed molybdenum particles. J Therm Spray Tech 10, 76–82 (2001). https://doi.org/10.1361/105996301770349538

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105996301770349538

Keywords

Navigation