Skip to main content
Log in

Processing and response of aluminum-lithium alloy composites reinforced with copper-coated silicon carbide particulates

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Lithium-containing aluminum alloys have shown promise for demanding aerospace applications because of their light weight, high strength, and good damage tolerance characteristics. Additions of ceramic reinforcements to an aluminum-lithium alloy can significantly enhance specific strength, and specific modulus while concurrently offering acceptable performance at elevated temperatures. The processing and fabrication of aluminum-lithium alloy-based composites are hampered by particulate agglomeration or clustering and the existence of poor interfacial relationships between the reinforcing phase and the matrix. The problem of distribution of the reinforcing phase in the metal matrix can be alleviated by mechanical alloying. This article presents the results of a study aimed at addressing and improving the interfacial relationship between the host matrix and the reinforcing phase. Copper-coated silicon carbide particulates are introduced as the particulate reinforcing phase, and the resultant composite mixture is processed by conventional milling followed by hot pressing and hot extrusion. The influence of extrusion ratio and extrusion temperature on microstructure and mechanical properties was established. Post extrusion processing by hot isostatic pressing was also examined. Results reveal the increase in elastic modulus of the aluminum-lithium alloy matrix reinforced with copper-coated SiC to be significantly more than the mechanically alloyed Al-Li/SiC counterpart. This suggests the possible contributions of interfacial strengthening on mechanical response in direct comparison with a uniform distribution of the reinforcing ceramic particulates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.S. Srivatsan, T.S. Sudarshan, and E.J. Lavernia,Prog. Mater. Sci., Vol 39, 1995, p 317–409

    Article  CAS  Google Scholar 

  2. T.S. Srivatsan and T.S. Sudarshan,Rapid Solidification Technology: An Engineering Guide, Technomic Publishing, Lancaster, PA, 1993

    Google Scholar 

  3. A.P. Divecha, S.G. Fishman, and S.D. Karmarkar,J. Met., Vol 33, 1981,p 12–16

    CAS  Google Scholar 

  4. M. Taya and R.J. Arsenault, Ed.,Metal-Matrix Composites: Thermomechanical Behavior, Pergamon Press, New York, 1989

    Google Scholar 

  5. L.M. Brown and W.M. Stobbs,Philos. Mag., Vol 23, 1971, p 1185–1190

    Article  CAS  Google Scholar 

  6. S.V. Nair, J.K. Tien, and R.C. Bates,Int. Met. Rev., Vol 30 (No. 6), 1985, p 285–296

    Google Scholar 

  7. D.L. McDanels,Metall. Trans., Vol 16A, 1985, p 1105–1115

    CAS  Google Scholar 

  8. S. Dermarkar,Met. Mater, Vol 2, 1986, p 144–147

    CAS  Google Scholar 

  9. W.H. Hunt, Jr., C.R. Cook, and R.R. Sawtell,Cost Effective High Performance Powder Metallurgy Aluminum Matrix Composites for Automotive Applications, SAE Technical Paper Series 910834, Warrendale, PA, 1991

  10. W.H. Hunt, Jr., Cost Effective High Performance Aluminum Matrix Composites for Aerospace Applications, presented at the International Conference on PM Aerospace Materials, Laussane, Switzerland, Nov 1991

  11. P.K. Liaw, H.G. Greggi, and W.A. Logsdon,J. Mater. Sci. Lett., Vol 22 (No. 5), 1987, p 1613–1617

    CAS  Google Scholar 

  12. P. Niskanen and W.R. Mohn,Adv. Mater. Proc, Vol 133 (No. 3), 1988, p 39–41

    Google Scholar 

  13. J.J. Lewandowski, C. Liu, and W.H. Hunt, Jr., inPowder Metallurgy Composites, P. Kumar, K. Vedula, and A.M. Ritter, Ed., TMS, Warrendale, PA, 1989

    Google Scholar 

  14. P.K. Liaw and W.A. Logsdon,Eng. Fract. Mech., Vol 24, 1986, p 637–645

    Article  Google Scholar 

  15. D.L. Davidson,Eng. Fract. Mech., Vol 33, 1989, p 965–977

    Article  Google Scholar 

  16. M. Manoharan and J.J. Lewandowski,Acta Metall., Vol 38 (No. 3), 1990, p 489–499

    Article  CAS  Google Scholar 

  17. T. Christman and S. Suresh,Mater. Sci. Eng., Vol 102, 1988, p 211–220

    Article  Google Scholar 

  18. P. Kelley,Composites, Vol 10 (No. 2), 1979

  19. M.R. Piggot, Ed.,Load Bearing Fiber Composites, Pergamon Press, New York, 1980

    Google Scholar 

  20. T.S. Srivatsan and E.J. Lavernia,J. Mater. Sci., Vol 27, 1992, p 5965–5981

    Article  CAS  Google Scholar 

  21. S. Suresh, A. Mortensen, and A. Needleman, Ed.,Fundamentals of Metal-Matrix Composites, Butterworths-Heineman, Boston, USA

  22. H.J. Rack, inProcessing and Properties of Powder Metallurgy Composites, K. Vedula, P. Kumar, and A. Ritter, Ed., TMS, Warrendale, PA, 1987, p 155

    Google Scholar 

  23. H.J. Rack,Adv. Mater. Manufact. Proc, Vol 3 (No. 3), 1988, p 327

    Article  Google Scholar 

  24. K.A. Khor, Z. Yuan, and F. Boey, inProcessing and Fabrication of Advanced Materials IV, T.S. Srivatsan and J.J. Moore, Ed., TMS, Warrendale, PA, 1996, p 499–508

    Google Scholar 

  25. T.S. Srivatsan, I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia,J. Mater. Sci., Vol 27, 1991, p 5965–5978

    Article  Google Scholar 

  26. F.A. McClintock,Ductility, American Society for Metals, Materials Park, OH, 1968, p 256–266

    Google Scholar 

  27. R.H. Van Stone, T.B. Cox, J.R. Low, Jr., and J.A. Psioda, The Fracture Behavior of Metals,Int. Met. Rev, Vol 30, 1975, p 157–171

    Google Scholar 

  28. A.S. Argon, J. Im, and R. Safoglu, Cavity Formation from Inclusions in Ductile Fracture,Metall. Trans., Vol 6A, 1975, p 825–831

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khor, K.A., Cao, Y., Boey, F.Y.C. et al. Processing and response of aluminum-lithium alloy composites reinforced with copper-coated silicon carbide particulates. J. of Materi Eng and Perform 7, 66–70 (1998). https://doi.org/10.1361/105994998770348052

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105994998770348052

Keywords

Navigation