Skip to main content
Log in

Time-modulated CVD process optimized using the taguchi method

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The Taguchi method is used herein to optimize the time-modulated chemical vapor deposition (TMCVD) process. TMCVD can be used to deposit smooth, nanocrystalline diamond (NCD) coatings onto a range of substrate materials. The implementation of the Taguchi method to optimize the TMCVD process can save time, effort, and money. The Taguchi method significantly reduces the number of experiments required to optimize a fabrication process. In this study, the effect of five TMCVD process parameters is investigated with respect to five key factors of the as-grown samples. Each parameter was varied at four different values (experimental levels). The five key factors, taking into consideration the experimental levels, were optimized after performing only 16 experiments. The as-grown films were characterized for hardness, quality, surface roughness, and microstructure using scanning electron microscopy, Raman spectroscopy, surface profilometry, and Vickers hardness testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. May, Diamond Thin Films: A 21st Century Material, Philos. Trans. R. Soc. London, Ser. A, 2000, 358, p 473–495

    Article  ADS  CAS  Google Scholar 

  2. M.N.R. Ashfold, P.W. May, C.A. Rego, and N.M. Everitt, Thin Film Deposition of Diamond, Chem. Soc. Rev., 1994, 23, p 21–30.

    Article  CAS  Google Scholar 

  3. D.M. Gruen, L. Shengzhong, A.R. Krauss, J. Luo, and X. Pan, Fullerences as Precursors for Diamond Growth, Appl. Phys. Lett., 1994, 64, p 1502–1504.

    Article  ADS  CAS  Google Scholar 

  4. D. Zhou, T.G. McCauley, L.C. Qin, A.R. Krauss, and D.M. Gruen, Synthesis of Nanocrystalline Diamond from Ar-CH4 Mixtures, J. Appl. Phys., 1998, 83(1), p 540–543

    Article  ADS  CAS  Google Scholar 

  5. D.M. Gruen, Review of Methods of Depositing Thin Film Diamond to Substrates, Annu. Rev. Mater. Sci. 1999, 29, p 211–259

    Article  CAS  Google Scholar 

  6. T.M. McCauley, D.M. Gruen, and A.R. Krauss, Synthesis of Diamond Thin Films from Ar-CH4 Mixtures, Appl. Phys. Lett., 1998, 73(12), p 1646–1648

    Article  ADS  CAS  Google Scholar 

  7. D. Zhou, A.R. Krauss, L.C. Qin, T.G. McCauley, D.M. Gruen, T.D. Corrigan, R.P.H. Chang, and H. Gnaser, Synthesis and Electron Field Emission NCD Thin Films Grown from Ar-CH4 Precursors, J. Appl. Phys., 1997, 82(9), p 4546–4550

    Article  ADS  CAS  Google Scholar 

  8. M.D. Fries and Y.K. Vohra, Characterization of Nanocrystalline Diamond Thin Films Grown from Plasma, Diamond Relat. Mater., 2005, in press

  9. S.A. Catledge, P. Baker, J.T. Tarvin, and Y.K. Vohra, Multilayer NCD Films Studied by Laser Reflectance Spectroscopy, Diamond Relat. Mater., 2000, 9, p 1512–1517

    Article  CAS  Google Scholar 

  10. Y.F. Zhang, F. Zhang, Q.J. Gao, X.F. Peng, and Z.D. Lin, Role of Ar Addition in the HFCVD System, Diamond Relat. Mater., 2001, 10, p 1523–1527

    Article  ADS  CAS  Google Scholar 

  11. X.S. Sun, N. Wang, W.J. Zhang, H.K. Woo, X.D. Han, I. Bello, C.S. Lee, and S.T. Lee, Studies of Various Species Added to Microwave Plasma to Form Nanocrystalline Diamond, J. Mater. Res. 1999, 14(8), p 3204–3213.

    ADS  CAS  Google Scholar 

  12. D.M. Bhusari, J.R. Yang, T.Y. Wang, K.H. Chen, S.T. Lin, and L.C. Chen, Deposition of Diamond Films from Precursor Gases, Mater. Lett. 1998, 36, p 279–283

    Article  CAS  Google Scholar 

  13. F.H. Sun, Z.M. Zhang, M. Chen, and H.S. Shen, Characterization and Deposition of Diamond Thin Films to Various Substrates, J. Mater. Process. Technol., 2002, 129, p 435–440

    Article  CAS  Google Scholar 

  14. H. Yagi, T. Ide, H. Toyota, and Y. Mori, Effects of Additions of Gases on the Deposition of NCD Thin Films, J. Mater. Res., 1998, 13(6), p 1724–1730.

    ADS  CAS  Google Scholar 

  15. J. Lee, B. Hong, R. Messier, and R.W. Collins, Nucleation and Bulk Film Growth Kinetics of NCD, Appl. Phys. Lett., 1996, 69(12), p 1716–1718

    Article  ADS  CAS  Google Scholar 

  16. T. Xu, S. Yang, J. Lu, Q. Xue, J. Li, W. Guo, and Y. Sun, Characterization of Nanocrystalline Thin Films Implanted with Nitrogen Ions, Diamond Relat. Mater., 2001, 10, p 1441–1447

    Article  CAS  Google Scholar 

  17. S.P. McGinnis, M.A. Kelly, S.B. Hagstrom, and R.L. Alvis, Observations of Nanocrystalline Diamond Films Deposited Using Ion-Assisted Microwave Plasma, J. Appl. Phys., 1996, 79(1), p 170–174

    Article  ADS  CAS  Google Scholar 

  18. H. Yoshikawa, C. Morel, and Y. Koga, Synthesis of NCD Films Using Microwave Plasma CVD, Diamond Relat. Mater., 2001, 10, p 1588–1591

    Article  CAS  Google Scholar 

  19. L.C. Chen, P.D. Kichambare, K.H. Chen, J.-J. Wu, J.R. Yang, and S.T. Lin, Growth of NCD Films and Spectroscopic Study of Growth, J. Appl. Physics, 2001, 89(1), p 753–759

    Article  ADS  CAS  Google Scholar 

  20. S. Mitura, A. Mitura, P. Niedzielski, and P. Couvrat, Simulated Growth of Diamond Crystals Using Fractals, Chaos Solitons Fractals, 1999, 10(12), p 2165–2176.

    Article  CAS  Google Scholar 

  21. T. Sharda, M. Umeno, T. Soga, and T. Jimbo, Growth of NCD by Bias Enhanced Microwave CVD, Appl. Phys. Lett., 2000, 77(26), p 4304–4306

    Article  ADS  CAS  Google Scholar 

  22. B.D. Beake, I.U. Hassan, C.A. Rego, and W. Ahmed, Friction Force Microscopy of Diamond Films Modified by Glow Discharge Treatment, Diamond Relat. Mater., 2000, 9, p 1421–1429

    Article  CAS  Google Scholar 

  23. N. Ali, V.F. Neto, and J. Gracio, Deposition of Nanocrystalline Diamond to Pyrolytic Carbon Using Sol Gel Techniques, J. Mater. Res., 2003, 18(2), p 296–305

    CAS  Google Scholar 

  24. N. Ali, V.F. Neto, Y. Kousar, G. Cabral, and J. Gracio, Deposition of NCD and TiO2 Coatings on pyC Using CVD and Sol Gel Techniques, Mater. Sci. Technol., 2003, 19, p 1273–1278

    Article  CAS  Google Scholar 

  25. Y. Kousar, N. Ali, and V. Neto, S. Mei, and J. Gracio, Surface Treatment of Pyrolytic Carbon Surfaces Using Diamond and Titania Thin Films, Diamond Relat. Mater., 2004, 13, p 638–642

    Article  CAS  Google Scholar 

  26. G. Taguchi, System of Experimental Design, Vol. 1 and 2, Unipub-Kraus/ASI, Dearborn, MI, 1988

    Google Scholar 

  27. G. Taguchi, Introduction to Quality Engineering: Designing Quality into Products and Processes, Unipub-Kraus/ASI, Dearborn, MI, 1987

    Google Scholar 

  28. R. Unal and E.B. Dean, “Taguchi Approach to Design Optimization for Quality and Cost: An Overview,” 1991 Annual Conference of the International Society of Parametric Analysts, May 1991, p 132–141

  29. M.W. Weiser and K.B. Fong, Characterization of NCD Thin Films on Various Ceramic Substrates, Am. Ceram. Soc. Bull., 1994, 73, p 83–86

    CAS  Google Scholar 

  30. V.F. Neto, “Investigation on the Film Properties of Advanced Diamond Coatings Deposited Using Time-Modulated CVD,” M.Sc. dissertation, University of Aveiro, Aveiro, Portugal, 2004

    Google Scholar 

  31. W. Kulisch, L. Ackermann, and B. Sobisch, Diamond Growth Kinetics and the Physics of Structure Formation When Deposited to Various Substrates, Phys. Status Solidi A, 1996, 154, p 155–165

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, W., Ahmed, E., Maryan, C. et al. Time-modulated CVD process optimized using the taguchi method. J. of Materi Eng and Perform 15, 236–241 (2006). https://doi.org/10.1361/105994906X95940

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105994906X95940

Keywords

Navigation