Skip to main content
Log in

Experimental and gas phase modeling of nanocrystalline diamond films grown on titanium alloys for biomedical applications

  • Testing And Evaluation
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

For biomedical applications, it is highly desirable to be able to deposit smooth adherent diamond films on various complex-shaped substrates using the hot filament chemical vapor deposition technique (HFCVD). The properties of these films are affected profoundly by process parameters such as filament temperature, gas composition, and pressure. In this study, we present an insight into the gas phase chemistry involved in HFCVD of smooth nanocrystalline diamond films using Ar/CH4/H2 precursor mixtures. Experimental results on the growth, surface morphology, and crystalline structure are also presented. It is evident that the addition of a noble gas such as argon has a considerable effect on the gas surface chemistry. Notably at high concentrations of inert gas dilution (>90 vol.% argon) there are significant changes in diamond crystallinity ranging from polycrystalline through microcrystalline, and at argon concentrations >98 vol.%, nanocrystalline facets are observed. Modeling of the gas phase chemistry showed that the relative concentrations of CH3 and C2H alter significantly in this region, and these in turn influence surface morphology and crystallinity of the deposited films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Angus and C.C. Hayman, Low Pressure, Metastable Growth of Diamond and Diamond-Like Phases, Science, Vol 241, 1988, p 913–920

    Article  CAS  Google Scholar 

  2. R. Erz, W. Dotter, K. Jung, and H. Ehrhardt, Preparation of Smooth and Nanocrystalline Diamond Films, Diamond Relat. Mater., Vol 2, 1993, p 449–453

    Article  CAS  Google Scholar 

  3. L.C. Qin, D. Zhou, A.R. Krauss, and D.M. Gruen, TEM Characterization of Nanodiamond Thin Films, Nanonstruct. Mater., Vol 10, 1998, p 649–660

    Article  CAS  Google Scholar 

  4. H.-G. Busmann, U. Brauneck, and H.-W. David, Fullerenes as the Parent Molecule for the Deposition of Tetrahedral Carbon, Carbon, Vol 36, 1998, p 529–533

    Article  CAS  Google Scholar 

  5. A. Erdemir, G. Fenske, A. Krauss, D.T. Gruen, T. McCauley, and R. Csensits, Tribological Properties of Nanocrystalline Diamond Films, Surf. Coat. Technoll, Vol 120–121, 1999, p 565–572

    Article  Google Scholar 

  6. J.M. Lopez, F.J. Gordillo-Vazquez, and J.M. Albella, Nanocrystalline Diamond Thin Films Deposited by 35 kHz Ar-Rich Plasmas, Appl. Surf. Sci., Vol 185, 2002, p 321–325

    Article  CAS  Google Scholar 

  7. P. Keblinski, S.R. Phillpot, D. Wolf, and H. Gleiter, On the Nature of Grain Boundaries in Nanocrystalline Diamond, Nanostruct. Mater., Vol 12, 1999, p 339–344

    Article  Google Scholar 

  8. T. Lin, A. Wee, Z. Shen, J. Lin, C. Lai, Q. Gao, and T. Zhang, High-Resolution Transmission Electron Microscopy Study of the Initial Growth of Diamond on Silicon, Diamond Relat. Mater., Vol 9, 2000, p 1703–1707

    Article  CAS  Google Scholar 

  9. M. Hiramatsu, K. Kato, C.H. Lau, J.S. Foord, and M. Hori, Measurement of C2 Radical Density in Microwave Methane/Hydrogen Plasma Used for Nanocrystalline Diamond Film Formation, Diamond Relat. Mater., Vol 12, 2003, p 365–368

    Article  CAS  Google Scholar 

  10. J.E. Butler, Optical Probing of Diamond Chemical Vapor Deposition, Carbon, Vol 28, 1990, p 809

    Article  Google Scholar 

  11. C. Zuiker, R. Krauss, D. Gruen, X. Pan, J.-C. Li, R. Csensits, A. Erdemir, C. Bindel, and G. Fenske, Physical and Tribological Properties of Diamond Films Grown in Argon Carbon Plasmas, Thin Solid Films, Vol 270, 1995, p 154–159

    Article  CAS  Google Scholar 

  12. P.K. Bachmann and W. van Enckevort, Diamond Deposition Technologies, Diamond Relat. Mater., Vol 1, 1992, p 1021–1034

    Article  CAS  Google Scholar 

  13. P. John, J.R. Rabeau, and J.I.B. Wilson, The Cavity Ring-Down Spectroscopy of C2 in a Microwave Plasma, Diamond Relat. Mater., Vol 11, 2002, p 608–611

    Article  CAS  Google Scholar 

  14. W. Ahmed, C. Rego, A. Afzal, N. Ali, and I. Hassan, CVD Diamond: Controlling Structure and Morphology, Vacuum, Vol 56, 2000, p 153–158

    Article  CAS  Google Scholar 

  15. I.U. Hassan, C.A. Rego, N. Ali, W. Ahmed, and I.P. O’Hare, An Investigation of the Structural Properties of Diamond Films Deposited by Pulsed Bias Enhanced Hot Filament CVD, Thin Solid Films, Vol 355–356, 1999, p 134–138

    Article  Google Scholar 

  16. A.N. Jones, W. Ahmed, I.U. Hassan, C.A. Rego, and H. Sein, Pulsed Biased Growth of Nanocrystalline Diamond by HFCVD, Surf. Eng., Vol 20, 2004, p 181–185

    Article  CAS  Google Scholar 

  17. R. J. Lee and F.M. Rupley, Gas Phase Composition during Chlorine-Assisted CVD of Diamond: A Molecular Beam Study, J. Appl. Phys., Vol 79, 1995, p 7264–7273

    Google Scholar 

  18. M. Frenklach, H. Wang, and M. Rabinowitz, Optimization of Large Chemical Kinetic Mechanisms Using Solution Mapping Method, J. Prog. Energy Combust. Sci., Vol 18, 1992, p 47–56

    Article  Google Scholar 

  19. J. W. C. G. Warnatz, Combustion Chemistry, Springer-Verlag, New York, 1984

    Google Scholar 

  20. A.F. Wagner and D.M. Wardlaw, Combustion in Chemical Systems, J. Phys. Chem., Vol 92, 1988, p 2462–2465

    Article  CAS  Google Scholar 

  21. P.H. Stewart, G.P. Smith, and D.M. Golden, Pressure and Temperature Dependence of Methane Decomposition, Int. J. Chem. Kinet., Vol 21, 1989, p 923–924

    Article  CAS  Google Scholar 

  22. T. Bohland, S. Dobe, F. Temps, and H.G. Wagner, Chemical Reactions in Gaseous Atmospheres, Ber. Bunsenges. Phys. Chem., Vol 89, 1989, p 1110–1115

    Article  Google Scholar 

  23. N.R. Cohen, Are Reaction Rate Coefficients Additive? Int. J. Chem. Kinet., Vol 23, 1991, p 397–417

    Article  CAS  Google Scholar 

  24. J.E. Butler, J.W. Fleming, L.P. Goss, and M.C. Lin, Reaction Rate Coefficients in Complex Systems, Am. Chem. Soc. ACS Symp. Ser., 1980, p 397–403, series 134

  25. J.A. Miller and C.T. Bowman, Mechanisms and Modeling of Nitrogen Chemistry in Combustion, Prog. Energy Combust. Sci., Vol 15, 1989, p 287–294

    Article  CAS  Google Scholar 

  26. A.J. Dean, D.F. Davidson, and R.K. Hanson, Modeling of Gas Species in Complex Gas Systems, J. Phys. Chem., Vol 95, 1991, p 183–185

    Article  CAS  Google Scholar 

  27. S. Zabarnick, J.W. Fleming, and M.C. Lin, Kinetic Studies of Reactions in Carbon-Based Systems, J. Chem. Phys., Vol 85, 1986, p 4375–4376

    Google Scholar 

  28. S. Bauerle, M. Klatt, and H.G. Wagner, Kinetic Studies in Gases Involving Hydrogen and Methane, Ber. Bunsenges. Phys. Chem., Vol 99, 1995, p 870–881

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, M.J., Jones, A.N. & Ahmed, W. Experimental and gas phase modeling of nanocrystalline diamond films grown on titanium alloys for biomedical applications. J. of Materi Eng and Perform 14, 565–568 (2005). https://doi.org/10.1361/105994905X64648

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105994905X64648

Keywords

Navigation