Skip to main content
Log in

On the singularity of the leblond model for TRIP and its influence on numerical calculations

  • Modeling And Simulation
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Transformation-induced plasticity (TRIP) in steel may be a cause of distortion of workpieces. Therefore, it is necessary to study this phenomenon to develop knowledge for the simulation of production processes (e.g., for heat treatment). The well-known Leblond model for TRIP becomes formally singular when the phase fraction p of the forming phase is zero. Usually, this singularity is avoided by changing the model via a cutoff procedure. This article addresses those conditions in which the singularity is formally removable and the output differences of the noncutoff and the cutoff models. Depending on the thresholds used for the cutoff functions, it turns out that the differences might be of an essential magnitude. Moreover, for constant temperature and stress, these differences turn up regardless of what phase transition law for p is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Denis, P. Archambault, E. Gautier, A. Simon, and G. Beck, Prediction of Residual Stress and Distortion of Ferrous and Non-Ferrous Metals: Current Status and Future Developments, J. Mater. Eng. Perform., Vol 11 (No. 1), 2002, p 92–102

    Article  CAS  Google Scholar 

  2. J.B. Leblond, J. Devaux, and J.C. Devaux, Mathematical Modelling of Transformation Plasticity in Steels. I: Case of Ideal-Plastic Phases, Int. J. Plast., Vol 5, 1989, p 551–572

    Article  CAS  Google Scholar 

  3. L. Taleb and F. Sidoroff, A Micromechanical Modeling of the Greenwodd-Johnson Mechanism in Transformation-Induced Plasticity, Int. J. Plast., Vol 19, 2003, p 1821–1842

    Article  MATH  CAS  Google Scholar 

  4. F.D. Fischer, Q.P. Sun, and K. Tanaka, Transformation-Induced Plasticity (TRIP), Appl. Mech. Rev., Vol 49, 1996, p 317–364

    Article  Google Scholar 

  5. M. Wolff, M. Böhm, S. Dachkovski, and G. Löwisch, “Zur makroskopischen Modellierung von spannungsabhängigem Umwandlungsverhalten und Umwandlungsplastizität bei Stählen und ihrer experimentellen Untersuchung in einfachen Versuchen,” Berichte aus der Technomathematik, 2003, Universität Bremen, FB 3, Germany, Report 03-06 (in German)

    Google Scholar 

  6. M. Wolff, M. Böhm, G. Löwisch, and A. Schmidt, “Modelling and Testing of Transformation-Induced Plasticity and Stress-Dependent Phase Transformations in Steel Via Simple Experiments,” Computational Materials Sciences (in press)

  7. A. Schmidt, M. Wolff, and M. Böhm, “Numerische Untersuchungen für ein Modell des Materialverhaltens mit Umwandlungsplastizität und Phasenumwandlungen beim Stahl 100Cr6 (Teil 1),” Berichte aus der Technomathematik, 2003, Universität Bremen, FB 3, Germany, Report 03-13 (in German)

    Google Scholar 

  8. M. Böhm, S. Dachkovski, M. Hunkel, T. Lübben, and M. Wolff, “Übersicht über einige makroskopische Modelle für Phasenumwandlungen im Stahl,” Berichte aus der Technomathematik, 2003, Universität Bremen, FB 3, Germany, Report 03-09 (in German)

    Google Scholar 

  9. M. Hunkel, T. Lübben, F. Hoffmann, and P. Mayr, Modellierung der bainitischen und perlitischen Umwandlung bei Stählen, HTM Z. Werkst. Warmebeh. Fertigung, Vol 54 (No. 6), 1999, p 365–372 (in German)

    CAS  Google Scholar 

  10. M. Böhm, M. Hunkel, A. Schmidt, and M. Wolff, Evaluation of Various Phase-Transition Models for 100Cr6 for Application in Commercial FEM Programs, J. Phys. IV, 2004 (in press)

  11. S. Dachkovski, M. Böhm, A. Schmidt, and M. Wolff, Comparison of Several Kinetic Equations for Pearlite Transformation in 100Cr6 Steel,” Berichte aus der Technomathematik, 2003, Universität Bremen, FB 3, Germany, Report 03-07 (in German)

    Google Scholar 

  12. J.B. Leblond and J. Devaux, A New Kinetic Model for Anisothermal Metallurgical Transformations in Steels Including Effect of Austenite Grain Size, Acta Metall., Vol 32 (No. 1), 1984, p 137–146

    Article  CAS  Google Scholar 

  13. M. Dalgic and G. Löwisch, Einfluss Einer Aufgeprägten Spannung auf die Isotherme, Perlitische und Baintische Umwandlung des Wälzlagerstahls 100Cr6, HTM Z. Werkst. Warmebeh. Fertigung, Vol 59 (No. 1), 2004, p 28–34 (in German)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolff, M., Böhn, M. On the singularity of the leblond model for TRIP and its influence on numerical calculations. J. of Materi Eng and Perform 14, 119–122 (2005). https://doi.org/10.1361/10599490522202

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/10599490522202

Keywords

Navigation