Skip to main content
Log in

Effect of manganese substitution on the magnetic properties of nickel-zinc ferrite

  • Testing And Evaluation
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of manganese (Mn)-ion substitution on the structural, magnetic, and electrical properties of nickel-zinc (Ni-Zn) ferrite of chemical formula Ni0.6−t Mn t Zn0.4Fe2O4 (t=0.0, 0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6) has been studied. It was found that Mn ion substitution increases the average grain diameter and improves the magnetization as well as the initial permeability. At the same time, the direct current (dc) resistivity at room temperature was found to increase with Mn ion substitution. The increase of both magnetization and dc resistivity due to the Mn substitution in a Ni-Zn ferrite is a promising result for applications in high-frequency fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Globus, H. Pascaer, and V. Cagan, Distance Between Magnetic Ions and Fundamental Properties in Ferrites, J. Phys. Coll. C1, Vol 38 (suppl.), 1977, p C1-C163

    Google Scholar 

  2. H. Igarashi and K. Okazaki, Effect of Porosity and Grain Size on the Magnetic Properties of Ni-Zn Ferrite, J. Am. Ceram. Soc., Vol 60 (No. 1–2), 1976, p 51–54

    Google Scholar 

  3. S.R. Murthy, “A Study of Microwave Absorbing Properties of Nano-Particles Ni-Zn Ferrites,” presented at Eighth International Conference on Ferrites (ICF8) September 18, The Japan Society of Powder and Powder Metallurgy (Kyoto and Tokyo, Japan), 2000

  4. G. K. Joshi, A. Y. Khot, and S.R. Swant, Electrical Conductivity Studies of Copper-Substituted and Non-Substituted Ni-Zn Mixed Ferrites, J. Mater. Sci., Vol 22, 1984, p 1694–1700

    Article  Google Scholar 

  5. D.C. Khan, M. Misra, and A.R. Das, Structure and Magnetization Studies of Ti-Substituted Ni0.3Zn0.7Fe2O4, J. Appl. Phys., Vol 53, 1982, p 2722–2724

    Article  ADS  CAS  Google Scholar 

  6. R. Mitra, R.K. Puri, and R.G. Mendiratta, Magnetic and Electrical Properties of Hot-Pressed Ni-Zn-Li Ferrites, J. Mater. Sci., Vol 27, 1992, p 1275–1279

    Article  CAS  Google Scholar 

  7. T. Nakamura and Y. Okano, Low Temperature Sintered Ni-Zn-Cu Ferrites, L. Phys. IV France, Vol 7, 1997, p C1-C91

    Google Scholar 

  8. R. Lebourgois, J. Ageron, H. Vincent, and J.-P. Ganne, “Low Losses Ni Zn Cu Ferrites,” presented at Eighth International Conference on Ferrites (ICF8) September 18, The Japan Society of Powder and Powder Metallurgy (Kyoto and Tokyo, Japan), 2000

    Google Scholar 

  9. G.F. Dionne and R.G. West, Magnetic and Dielectric Properties of Ni0.65Zn0.35Fe2−x Mn x O4. J. Appl. Phys., Vol 61, 1987, p 3868–3870

    Article  ADS  CAS  Google Scholar 

  10. S.A. Poltinnikov, Some Magnetic Properties of Nickel-Cadmium Ferrite, Sov. Phys. Solid State, Vol 8, 1966, p 1144–1149

    Google Scholar 

  11. S.A. Mazen, M.H. Abdallah, B.A. Sabrah, and H.A.M. Hashem, The Effect of Titanium on Some Physical Properties of CuFe2O4, Phys. Status Solidi A, Vol 134, 1992, p 263–271

    Article  CAS  Google Scholar 

  12. F. Petil and M. Lenglet, Spectroscopic Evidence of the Mn3+-Fe2+ Octahedral Pair in Lithium-Manganese Ferrites Near the Order-Disorder Transition, Solid State Commun., Vol 86, 1993, p 67–71

    Article  Google Scholar 

  13. R.D. Shannon and C.T. Prewitt, Revised Values of Effective Ionic Radii, Acta Crystallogr., Vol B26, 1970, p 1046–1067

    Google Scholar 

  14. B.S. Boyanov, Synthesis and Neel Temperature Determination of Ferrites From the Mo-Zn-Fe2O3 Systems (M=Cu, Co and Ni), J. Therm. Anal., Vol 41, 1994, p 1607

    Article  CAS  Google Scholar 

  15. W.D. Kigery, H.K. Bowen, and D.R. Uhlmann, Introduction of Ceramics, John Wiley & Sons, 1975

  16. N. Rezlescu, E. Rezlescu, C. Pasnicu, and M.L. Craus, Effect of the Rare-Earth Ions on Some Properties of a Nickel-Zinc Ferrite, J. Phys.: Condens. Matter, Vol 6, 1994, p 5707–5716

    Article  ADS  CAS  Google Scholar 

  17. R.G. Kulkarini and V.U. Patial, Magnetic Ordering in Cu-Zn Ferrite, J. Mater. Sci., Vol 17, 1982, p 843

    Article  Google Scholar 

  18. S. Chikazumi and S. Charap, Physics of Magnetism, John Wiley & Sons, 1964, p 153

  19. A.A. Sattar, A.H. Wafik, K.M. El-Shokrofy, and M.M. El-Tabey, Magnetic Properties of Cu-Zn Ferrites Doped With Rare Earth Oxides, Phys. Status Solidi A, Vol 171, 1999, p 563–569

    Article  ADS  CAS  Google Scholar 

  20. G.C. Jain, B.K. Das, R.S. Khanduja, and S.C. Gupta, Effect of Intragranular Porosity of Initial Permeability and Coercive Force in a Manganese Zinc Ferrite, J. Mater. Sci., Vol 11, 1976, p 1335–1338

    Article  Google Scholar 

  21. S. Chikazumi and S. Charap, Physics of Magnetism, John Wiley & Sons, 1964, p 140

  22. C.M. Srivastava, G. Srinivasan, and N.G. Nanadikar, Exchange Constants in Spinel Ferrites, Phys. Rev. B: Condens. Mater, Vol 19 (No. 1), 1979, p 499–508

    ADS  CAS  Google Scholar 

  23. J. Smit and P.J. Wijn, Ferrites, John Wiley and Sons, 1959, p 233

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sattar, A.A., El-Sayed, H.M., El-Shokrofy, K.M. et al. Effect of manganese substitution on the magnetic properties of nickel-zinc ferrite. J. of Materi Eng and Perform 14, 99–103 (2005). https://doi.org/10.1361/10599490522185

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1361/10599490522185

Keywords

Navigation