Skip to main content

Advertisement

Log in

Transformation superplasticity in Zircadyne 705

  • Superplastic Forming
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The zirconium alloy Zircadyne 705 (main alloying addition: 2.5 wt.% Nb) was thermally cycled from 900 °C (100% β-phase) to 710 °C (80% α-phase and 20% β-phase), resulting in strain increments after each cycle that are linearly proportional to stress up to 2 MPa. Tensile elongations in excess of 240% were achieved without fracture. The Newtonian flow behavior and high ductility indicate that transformation superplasticity is the dominant deformation mechanism. The superplastic strain increment decreases as the cycling amplitude and period decrease, in general agreement with existing transformation superplasticity models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.W. Greenwood and R.H. Johnson, The Deformation of Metals Under Stress During Phase Transformations, Proc. R. Soc. London, Vol 283A, 1965, p 403–422

    ADS  Google Scholar 

  2. P. Zwigl and D.C. Dunand, Transformation Superplasticity of Iron and Fe/TiC Metal Matrix Composites, Metall. Mater. Trans. A, Vol 29, 1998, p 565–575

    Article  Google Scholar 

  3. P. Zwigl and D.C. Dunand, A Numerical Model of Transformation Superplasticity for Iron, Mater. Sci. Eng., Vol 262, 1999, p 166–172

    Article  Google Scholar 

  4. J.P. Poirier, On Transformation Plasticity, J. Geophys. Res., Vol 87, 1982, p 6791–6797

    Article  ADS  Google Scholar 

  5. D.C. Dunand and C.M. Bedell, Transformation-Mismatch Superplasticity in Reinforced and Unreinforced Titanium, Acta Mater., Vol 44, 1996, p 1063–1076

    Article  CAS  Google Scholar 

  6. P. Zwigl and D.C. Dunand, Transformation Superplasticity of Zirconium, Metall. Mater. Trans. A, Vol 29, 1998, p 2571–2582

    Article  Google Scholar 

  7. E. Gautier, A. Simon, and G. Beck, Transformation Plasticity During Perlitic Transformation of an Eutectoide Steel, Acta Metall., Vol 35, 1987, p 1367–1375

    Article  CAS  Google Scholar 

  8. C. Schuh and D.C. Dunand, Non-Isothermal Transformation-Mismatch Plasticity: Modeling and Experiments on Ti-6Al-4V, Acta Mater., Vol 49, 2001, p 199–210

    Article  CAS  Google Scholar 

  9. C. Schuh and D.C. Dunand, Tensile Fracture During Transformation Superplasticity of Ti-6Al-4V, J. Mater. Res., Vol 16, 2001, p 865–875

    CAS  ADS  Google Scholar 

  10. N. Gey, E. Gautier, M. Humbert, A. Cerqueira, J.L. Bechade, and P. Archambault, Study of the Alpha/Beta Phase Transformation of Zy-4 in Presence of Applied Stresses At Heating: Analysis of the Inherited Microstructures and Textures, J. Nucl. Mater., Vol 302, 2002, p 175–184

    Article  CAS  ADS  Google Scholar 

  11. R.S.W. Shewfelt, L.W. Lyall, and D.P. Godin, A High-Temperature Creep Model for Zr-2.5 wt% Nb Pressure Tubes, J. Nucl. Mater., Vol 125, 1984, p 228–235

    Article  CAS  Google Scholar 

  12. P.M. Sargent and M.F. Ashby, Deformation Maps for Titanium and Zirconium, Scr. Metall., Vol 16, 1982, p 1415–1422

    Article  CAS  Google Scholar 

  13. C. Schuh and D.C. Dunand, Transformation Superplasticity of Super α2 Titanium Aluminide, Acta Mater., Vol 46, 1998, p 5663–5675

    Article  CAS  Google Scholar 

  14. H. Okamoto, Phase Diagrams of Dilute Binary Alloys, ASM International, 2002, p 301

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, H.J., Dunand, D.C. Transformation superplasticity in Zircadyne 705. J. of Materi Eng and Perform 13, 665–669 (2004). https://doi.org/10.1361/10599490421268

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1361/10599490421268

Keywords

Navigation