Skip to main content
Log in

Effect of thermal stresses on the thermal expansion and damping behavior of ZA-27/aluminite metal matrix composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

When the fabrication of a metal matrix composite (MMC) involves its cooling from a high temperature, plastic-elastic residual deformation fields can be generated within and around the particle due to the differential thermal expansion between the particle and matrix metal. The present investigation is concerned with the effect of thermal residual stresses on the thermal expansion and damping behavior of aluminite particulate-reinforced ZA-27 alloy MMCs. Composites were prepared by the compocasting technique with 1, 2, 3, and 4 wt.% of aluminite reinforcement. Thermal expansion and damping properties have been studied experimentally as a function of temperature over a temperature range 30 to 300 °C both in the heating and cooling cycle. The thermal expansion studies exhibited some residual strain, which increased with the increase in the weight percent of the reinforcement. The damping capacity of both the composites and matrix alloy is found to increase with the increase in temperature during the heating cycle, whereas in the cooling cycle, damping behavior exhibits a maximum, which becomes more pronounced with the increase in the weight percentage of the reinforcement. The appearance of the maximum may be linked with dislocation generation and motion as a result of plastic deformation of the matrix at the metal/reinforcement interface. This phenomenon is attributed to the thermal stresses generated as a result of coefficient of thermal expansion (CTE) mismatch between the composite constituent phases. The thermal stresses have been estimated in both the cases using simple models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.H.W. Seah, S.C. Sharma, P.R. Rao, and B.M. Girish: Mater. Design, 1995, vol. 16, pp. 277–81.

    Article  CAS  Google Scholar 

  2. S.C. Sharma and A. Ramesh: J. Mater. Engg. and Performance, 2000, 9 (5), pp. 557–65.

    Article  CAS  Google Scholar 

  3. S.C. Sharma, B.M. Girish, D.R. Somashekar, R. Kamath, and B.M. Satish, Wear, 1999, vol. 224, (1999) pp. 89–94.

    Article  CAS  Google Scholar 

  4. G.M. Vyletel, J.E. Allison, and D.C. Van Aken: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 3143–54.

    Article  CAS  Google Scholar 

  5. R.J. Perez, J. Zhang, M.N. Gungor, and E.J. Lavernia: Metall. Trans. A, 1993, vol. 24A, pp. 701–11.

    CAS  Google Scholar 

  6. H. Akbulut, M. Durman, and F. Yilmaz: Mater. Sci. Technol., 1998, vol. 14, pp. 299–305.

    CAS  Google Scholar 

  7. S.C. Sharma: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 773–80.

    Article  CAS  Google Scholar 

  8. Rajendra U. Vaidya and K.K. Chawla: Comp. Sci. Technol., 1994, vol. 50, pp. 13–22.

    Article  CAS  Google Scholar 

  9. Eun U. Lee: Metall. Trans. A, 1992, vol. 23A, pp. 2205–10.

    CAS  Google Scholar 

  10. E. Gervais, R.J. Barnhurst, and C.A. Loong: J. Met., 1985, vol. 37, pp. 43–47.

    CAS  Google Scholar 

  11. H. LeHuy and G.L. Esperance: J. Mater. Sci., 1991, vol. 26, pp. 559–68.

    Article  CAS  Google Scholar 

  12. K.J. Altorfer: Met. Progr., Nov., pp. 29–31.

  13. S.C. Sharma, B.M. Girish, B.M. Satish, and R. Kamath: J. Mater. Eng. Performance, 1998, vol. 7 (1), pp. 93–99.

    Article  CAS  Google Scholar 

  14. S.C. Sharma, B.M. Satish, B.M. Girish, R. Kamath, and Hiroshi Asanuma: Tribol. Int., 1998, vol. 31 (4), pp. 183–88.

    Article  CAS  Google Scholar 

  15. R.J. Arsenault and N. Shi: Mater. Sci. Eng., 1986, vol. 81, pp. 175–87.

    Article  CAS  Google Scholar 

  16. Mary Vogelsang, R.J. Arsenault, and R.M. Fisher: Metall. Trans. A, 1986, vol. 17A, pp. 379–89.

    CAS  Google Scholar 

  17. H.M. Ledbetter and M.W. Austin: Mater. Sci. Eng., 1987, vol. 89, pp. 53–61.

    Article  CAS  Google Scholar 

  18. S.C. Sharma, B.M. Girish, D.R. Somashekar, R. Kamath, and B.M. Satish: Composite Sci., 1999, vol. 8 (3), pp. 309–14.

    CAS  Google Scholar 

  19. M. Durman and S. Murphy: J. Mater. Sci., 1997, vol. 32, pp. 11603–11611.

    Article  Google Scholar 

  20. Wang Hongmin, Luo Meihua, Chen Yungui, and Wu Yigui: J. Mater. Sci. Lett., 1996, vol. 15, p. 1008.

    Article  Google Scholar 

  21. Yuanyuan Li, Tungwai Leo Nagi, Wei Xia, and Wen Zhang: Wear, 1996, vol. 198, pp. 126.

    Article  Google Scholar 

  22. R.R. Tummala and A.L. Freidberg: J. Appl. Phys., 1970, vol. 41, (13), pp. 5104–07.

    Article  CAS  Google Scholar 

  23. Z.M. Sun, J.B. Li, Z.G. Wang, and W.J. Li: Acta Metall. Mater., 1992, vol. 40 (11), pp. 2961–66.

    Article  CAS  Google Scholar 

  24. L. Parrine and R. Schaller: Acta Mater., 1996, vol. 44 (12), pp. 4881–88.

    Article  Google Scholar 

  25. L. Parrini and R. Schaller: Scripta Mater., 1993, vol. 28, pp. 763–67.

    Article  CAS  Google Scholar 

  26. L. Parrine and R. Schaller: Acta Mater., 1996, vol. 44 (10), pp. 3895–3903.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sastry, S., Krishna, M. & Uchil, J. Effect of thermal stresses on the thermal expansion and damping behavior of ZA-27/aluminite metal matrix composites. J. of Materi Eng and Perform 10, 220–224 (2001). https://doi.org/10.1361/105994901770345240

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105994901770345240

Keywords

Navigation