Skip to main content
Log in

Hot deformation mechanisms in Ti-5.5Al-1Fe alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The mechanisms of hot deformation in the alloy Ti-5.5Al-1Fe have been studied in the temperature range 750 to 1150 °C and with the true strain rate varying from 0.001 to 100 s−1 by means of isothermal compression tests. At temperatures below β transus and low strain rates, the alloy exhibited steady-state flow behavior, while, at high strain rates, either continuous flow softening or work hardening followed by flow softening was observed. In the β region, the deformation behavior is characterized by steady-state behavior at low strain rates, yield drops at intermediate strain rates, and oscillations at high strain rates. The processing maps revealed two domains. (1) In the temperature range 750 to 1050 °C and at strain rates lower than 0.01 s−1, the material exhibits fine-grained superplasticity. The apparent activation energy for superplastic deformation is estimated to be about 328 kJ/mole. The optimum conditions for superplasticity are 825 °C and 0.001 s−1. (2) In the β region, a domain occurs at temperatures above 1100 °C and at strain rates from 0.001 to 0.1 s−1 with its peak efficiency of 47% occurring at 1150 °C and 0.01 s1. On the basis of kinetic analysis, tensile ductility, and grain size variation, this domain is interpreted to represent dynamic recrystallization (DRX) of β phase. The apparent activation energy for DRX is estimated to be 238 kJ/mole. The grain size (d) is linearly dependent on the Zener-Hollomon parameter (Z) per the equation

$$log (d) = 2.86 - 0.023 \log (Z)$$

In the regimes in the temperature range 750 to 825 °C and at strain rates from 0.01 to 1.2 s−1 and at temperatures above 1050 °C and strain rates above 10 s−1, the material exhibits flow instabilities manifested in the form of adiabatic shear bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Wang: Mater. Sci. Eng., 1996, vol. A213, pp. 134–37.

    CAS  Google Scholar 

  2. Y. Okazaki, Y. Ito, A. Ito, and T. Tateishi: in Metallurgy and Technology of Practical Titanium Alloys, S. Fujishiro, D. Eylon, and T. Kishi, eds., TMS, Warrendale, PA, 1994, pp. 313–21.

    Google Scholar 

  3. H. Fuji, K. Takashahi, and S. Soeda: in Titanium ’95 Science and Technology, P.A. Blenkinsop, W.J. Evans, and H.M. Flower, eds., Institute of Materials, Oxford, United Kingdom, 1996, pp. 2539–46.

    Google Scholar 

  4. M. Niimomi, T. Kobayashi, O. Toriama, N. Kawakami, Y. Ishida, and Y. Matsuyama: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3925–35.

    Article  Google Scholar 

  5. H. Fuji: Mater. Sci. Eng., 1998, vol. A243, pp. 103–08.

    Google Scholar 

  6. J. Koike, Y. Shinoyama, H. Fuji, and K. Maruyama: Scripta Mater., 1998, vol. 39 (8), pp. 1009–14.

    Article  CAS  Google Scholar 

  7. J. Koike, Y. Shimoyama, T. Okamura, and K. Maruyama: Mater. Sci. Forum, 1999, vol. 304–306, pp. 183–88.

    Article  Google Scholar 

  8. J. Koike, Y. Shimoyama, L. Ohnuma, T. Okamura, R. Kainuma, K. Ishida, and K. Maruyama: Acta Mater., 2000, vol. 48 (9), pp. 2059–69.

    Article  CAS  Google Scholar 

  9. I. Weiss, T.H. Froes, D. Eylon, and G.E. Welsh: Metall. Trans. A, 1986, vol. 17A, pp. 1935–47.

    CAS  Google Scholar 

  10. J.J. Jonas, C.M. Sellars, and W.J. McTegart: Metall. Rev., 1969, vol. 14 (1), pp. 1–24.

    Google Scholar 

  11. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lak, and D.R. Barker: Metall. Trans. A, 1984, vol. 15A, pp. 1883–92.

    CAS  Google Scholar 

  12. Y.V.R.K. Prasad and T. Seshacharyulu: Int. Mater. Rev., 1998, vol. 43 (6), pp. 243–58.

    CAS  Google Scholar 

  13. Y.V.R.K. Prasad and S. Sasidhara: Hot Working Guide: A Compendium of Processing Maps, ASM, Materials Park, OH, 1997, pp. 449–95.

    Google Scholar 

  14. H. Zeigler: in Progress in Solid Mechanics, I.N. Sneddon and R. Hill, eds., North Holland Publishing Co., Amsterdam, 1963, pp. 93–194.

    Google Scholar 

  15. I. Weiss and S.L. Semiatin: Mater. Sci. Eng., 1998, vol. A243, pp. 46–65.

    CAS  Google Scholar 

  16. I. Philippart and H.J. Rack: Mater. Sci. Eng., 1998, vol. A243, pp. 196–200.

    CAS  Google Scholar 

  17. N.E.W. De Recca and C.M. Libanati: Acta Metall., 1968, vol. 16 (10), pp. 1297–1305 (in French).

    Article  Google Scholar 

  18. Z. Liu and G. Welsh: Metall. Trans. A, 1988, vol. 19A, pp. 1121–25.

    CAS  Google Scholar 

  19. J.F. Murdock, I.S. Lundy, and E.E. Stansbury: Acta Metall., 1964, vol. 12 (9), pp. 1033–39.

    Article  Google Scholar 

  20. M.L. Meir and A.K. Mukherjee: Scripta Mater., 1991, vol. 25 (6), pp. 1471–76.

    Article  Google Scholar 

  21. T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, and Y.V.R.K. Prasad; Mater. Sci. Eng., 2000, vol. A284, pp. 184–94.

    CAS  Google Scholar 

  22. I. Weiss and S.L. Semiatin: Mater. Sci. Eng., 1999, vol. A 263, pp. 243–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balasubrahmanyam, V.V., Prasad, Y.V.R.K. Hot deformation mechanisms in Ti-5.5Al-1Fe alloy. J. of Materi Eng and Perform 10, 731–739 (2001). https://doi.org/10.1361/105994901770344629

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105994901770344629

Keywords

Navigation