Skip to main content
Log in

Effect of aging on oxidation behavior of aluminum-albite composites at high temperatures

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The oxidation behavior of an aluminum composite reinforced with albite particles of 1, 2, 3, and 4 wt.% at 500 to 800 K has been investigated. Within the experimental temperature range, a parabolic weight change/area was observed with activation energy. The weight change/area as a function of oxidation time becomes linear after an initial period. On oxidation, formation of an oxide scale was found whose morphology depends on temperature, cooling rate, and subscale formation at the interface between the matrix and reinforcement. Detailed analysis by scanning electron microscopy (SEM) showed that the oxide scales were not homogenous throughout, but exhibited several layers, which differ in microstructure and composition with an increase in thickness. The presence of albite particulate reinforcement significantly affects the oxidation behavior. The interface oxidization kinetics was found to be higher than that in the other regions. The oxidation products were both metallic oxides and their respective alloying element oxides. The exposure time of specimens to oxidation was 1000 min, chosen to study oxidation behavior at different temperatures. The aging of both matrix and composite specimens improves oxidation resistance due to the residual stress-relaxation phenomena accompanying these specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Elomari, R. Boukhili, and M.D. Skibo: J. Mater. Sci., 1995, vol. 30, p. 3037.

    Article  CAS  Google Scholar 

  2. Metal Matrix Composites, J.N. Fridlymander: Chapman and Hall, Oxford, United Kingdom, 1995.

  3. H. Jones, C.A. Lavender, and M.T. Smith: Scripta Metall., 1987, vol. 21, p. 1565.

    Article  CAS  Google Scholar 

  4. S.C. Sharma, B.M. Girish, R. Kamath, and B.M. Satish: J. Mater. Eng. Performance, 1999, vol. 8, p. 1999.

    Article  Google Scholar 

  5. E.A. Feest: Mater. Des., 1986, vol. 7, p. 58.

    Google Scholar 

  6. John E. Allison and Gerald S. Cole: J. Met., 1993, vol. 45, p. 29.

    Google Scholar 

  7. R.R. Bowles, D.L. Macini, and M.W. Toaz: Advanced Composites—The Latest Developments, Proc. 2nd Conf. on Advanced Composites, Peter Beardmore and Carl F. Johnson, eds., ASTM International, Minnesota, MI, 1990, p. 21.

    Google Scholar 

  8. Z. Rizhan, G. Manjiou, and Z. Yu: Oxid. Met., 1987, vol. 27, p. 253.

    Article  Google Scholar 

  9. R.H. Brincknell and D.A. Woodford: Metall. Trans. A, 1981, vol. 12A, p. 1673.

    Google Scholar 

  10. D.A. Woodford and R.H. Bricknell: Metall. Trans. A, 1981, vol. 12A, p. 2467.

    Google Scholar 

  11. S. Ruess and H. Vehoff: Scripta Metall. Mater., 1990, vol. 24, p. 1021.

    Article  Google Scholar 

  12. K.S. Min, A.J. Ardell, S.J. Eck, and F.C. Chen: J. Mater. Sci., 1995, vol. 30, p. 5479.

    Article  CAS  Google Scholar 

  13. R. Mitra and V.V. Rama Rao: Metall. Mater. Trans. A, 1988, vol. 29A, p. 1665.

    Google Scholar 

  14. T. Tanabe, M. Nishiura, and Z. Asaki: Mater. Trans. JIM, 1992, vol. 33(12), p. 1155.

    Google Scholar 

  15. R. Mitra, V.V. Rama Rao, and Y.R. Mahajan: Mater. Sci. Technol., 1997, vol. 13, p. 415.

    CAS  Google Scholar 

  16. R. Mehrabian, R.G. Rick, and M.C. Flemings: Metall. Trans., 1974, vol. 5, pp. 1899–1905.

    CAS  Google Scholar 

  17. M. Gupth and M. Manoharan: Mater. Sci. Technol., 1997, vol. 13, p. 523.

    Google Scholar 

  18. S. Suresh, T. Christman, and Y. Sugimum, Scripta Metall., 1989, vol. 23(9), p. 1599.

    Article  CAS  Google Scholar 

  19. Z. Trojanova, M. Pahutova, J. Kiehn, P. Lukac, K.U. Kainer: Proc. 1st Int. Conf., San Sebastian, Spain, Sept. 1996, p. 1001.

  20. B. Budiansky, J.W. Hutchinson, and J.C. Lambropoulos: Int. J. Solids Struct., 1983, vol. 19, p. 337.

    Article  MATH  Google Scholar 

  21. S.K. Prasad, A.K. Patwardhan, and A.H. Yegnewaran: J. Mater. Sci., 1996, vol. 31, p. 6317.

    Article  CAS  Google Scholar 

  22. Rajendra U. Vaidya and K.K. Chawla: Comp. Sci. Technol., 1994, vol. 50, p. 13.

    Article  CAS  Google Scholar 

  23. Y. Song, and T.N. Bakes: Mater. Sci. Technol., 1994, vol. 10, p. 406.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S.C. Effect of aging on oxidation behavior of aluminum-albite composites at high temperatures. J. of Materi Eng and Perform 9, 344–349 (2000). https://doi.org/10.1361/105994900770346033

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105994900770346033

Keywords

Navigation