Skip to main content

Numerical modeling of the transient liquid phase bonding process of Ni using Ni-B-Cr ternary filler metal

Abstract

A model of dissolution and isothermal solidification during the transient liquid phase (TLP) bonding process of nickel using Ni-15.2wt.%Cr-4.0wt.%B ternary filler metal is presented. The model combined thermodynamic calculation with Thermo-Calc software and diffusion analysis by a finite difference method. The model assumed diffusion-controlled transformation, and the equilibrium compositions at the solid-liquid interface were calculated using Thermo-Calc software. The interface velocity was determined from the mass balance of solutes diffusing into or out from the interface. When a Ni specimen with a 30 µm thick filler metal was kept at 1473 K for 3.6 ks, isothermal solidification was almost complete. On the other hand, when the specimen was kept at 1373 K for 3.6 ks, residual liquid remained in the bonding region. The solidification sequence of the residual liquid during the cooling stage was calculated by the Scheil simulation. The simulation showed that solidification of the residual liquid is completed with a ternary eutectic reaction, L→fcc+Ni3B+CrB. The calculated width of the eutectic region concurred with the experimental result.

This is a preview of subscription content, access via your institution.

References

  1. D.S. Duvall, W.A. Owczarski, and D.F. Paulonis, Weld. J., Vol 53, 1974, p 203

    Google Scholar 

  2. J.T. Nieman and R.A. Garret, Weld. J., Res. Supp., Vol 53, 1974, p 175

    Google Scholar 

  3. R.R. Wells, Weld. J., Res. Supp., Vol 53, 1976, p 20

    Google Scholar 

  4. I. Tuah-Poku, M. Dollar, and T.B. Massalski, Metall. Trans. A, Vol 19, 1988, p 675

    Article  Google Scholar 

  5. W.F. Gale and E.R. Wallach, Metall. Trans. A, Vol 22, 1991, p 2451

    Article  Google Scholar 

  6. R. Venkatraman, J.R. Wilcox, and S.R. Cain, Metall. Trans. A, Vol 28, 1997, p 699

    Article  Google Scholar 

  7. E.A. Moelwyn-Hughes, The Kinetics of Reaction in Solution, Claredon Press, 1974, p 374

  8. H. Ikawa, Y. Nakao, and T. Isai, Trans. Jpn. Weld. Soc., 1978, p 440

  9. Y. Nakao, K. Nishimoto, K. Shinozuka, K.C. Yun, and Y. Hori, Trans. Jpn. Weld. Soc., 1988, p 513

  10. Y. Nakao, K. Nishimoto, K. Shinozuka, K.C. Yun, and Y. Hori, Trans. Jpn. Weld. Soc., 1989, p 213

  11. Y. Nakao, K. Nishimoto, K. Shinozuka, K.C. Yun, and Y. Hori, Trans. Jpn. Weld. Soc., 1991, p 55

  12. N. Nakagawa, C.H. Lee, and T.H. North, Metall. Trans. A, Vol 22, 1991, p 543

    Article  Google Scholar 

  13. S.R. Chain, J.R. Wilcox, and R. Venkatraman, Acta Metall. Mater., Vol 45, 1997, p 701

    Google Scholar 

  14. B. Sundman, B. Jansson, and J.-O. Andersson, Calphad, Vol 9, 1985, p 261

    Article  Google Scholar 

  15. Kinzoku Data Book, Japan Institute of Metals, 1983

  16. A. Majidic, D. Graf, and H. Schenek, Arch. Eisenhüttenwes., Vol 40, 1966, p 27

    Google Scholar 

  17. E. Scheil, Z. Metallkd., Vol 34, 1942, p 70

    Google Scholar 

  18. H. Kokawa, C.H. Lee, and T.H. North, Metall. Trans. A, Vol 22, 1991, p 1627

    Article  Google Scholar 

  19. K. Ikeuchi, Y. Zhou, H. Kokawa, and T.H. North, Metall. Trans. A, Vol 23, 1992, p 2905

    Article  Google Scholar 

  20. K. Saida, Y. Zhou, and T.H. North, J. Mater. Sci., Vol 28, 1993, p 6427

    Article  ADS  Google Scholar 

  21. K. Saida, Y. Zhou, and T.H. North, J. Jpn. Inst. Mater., Vol 58, 1994, p 810

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ohsasa, K., Narita, T. & Shinmura, T. Numerical modeling of the transient liquid phase bonding process of Ni using Ni-B-Cr ternary filler metal. JPE 20, 199 (1999). https://doi.org/10.1361/105497199770335721

Download citation

  • Received:

  • Revised:

  • DOI: https://doi.org/10.1361/105497199770335721

Keywords

  • Filler Metal
  • Transient Liquid Phase
  • Residual Liquid
  • Isothermal Solidification
  • Temperature Holding