Skip to main content
Log in

Computation of metastable phases in tungsten-carbon system

  • Basic And Applied Research
  • Published:
Journal of Phase Equilibria

Abstract

Metastable phase equilibria in the W-C system are presented in the vicinity of the metastable reactions involving W2C, WC1−x , and WC. Metastable phase boundaries were obtained by reproducing the stable boundaries using optimized Gibbs energy formulations and extrapolating them into regions of metastability. Four metastable reactions were obtained: a metastable congruent melting reaction of WC at 3106 K, a metastable eutectic reaction between WC1−x and graphite at 2995 K, a metastable eutectic reaction between W2C and WC at 2976 K, and a metastable eutectic reaction between W2C and graphite at 2925 K. The reaction enthalpies and entropies associated with these transitions are also computed using the available Gibbs energy data. Furthermore, possible kinetic paths that could lead to metastability are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Rudy: “Compendium of Phase Diagram Data,” Report No. AFML-TR-65-2, Part V, Air Force Materials Laboratory, Wright-Patterson Air Force Base, OH, 1969, pp. 192–97.

    Google Scholar 

  2. B. Uhrenius: “Calculation of the Ti-C, W-C, and Ti-W-C Phase Diagrams,” CALPHAD, 1984, 8(2), pp. 101–19.

    Article  Google Scholar 

  3. P. Gustafson: “Thermodynamic Properties of the Co-W-C System,” Mater. Sci. Technol., 1986, 2, pp. 653–58.

    Google Scholar 

  4. T. Johansson and B. Uhrenius: “Phase Equilibria, Isothermal Reactions, and a Thermodynamic Study in the Co-W-C System at 1150 °C,” Met. Sci., 1978, Feb, pp. 83–94.

  5. F. Guillermet: “Thermodynamic Properties of the Co-W-C System,” Metall. Trans. A, 1989, 20A, pp. 935–56.

    ADS  Google Scholar 

  6. W. Huang and M. Selleby: “Thermodynamic Assessment of the Nb-W-C System,” Z. Metallkd., 1997, 88(1), pp. 55–62.

    Google Scholar 

  7. K. Frisk: “A Thermodynamic Analysis of the Ta-W-C and the Ta-W-C-N Systems,” Z. Metallkd., 1999, 90(9), pp. 704–11.

    Google Scholar 

  8. G.M. Lamble, S.M. Heald, D.E. Sayers, E. Ziegler, and P.J. Viccaro: “Glancing Angle EXAFS Investigations of the Effects of Annealing on W-C Multilayer Composition,” Physica B, 1989, 158, pp. 672–73.

    Article  ADS  Google Scholar 

  9. T. Oshino, D. Shindo, M. Hirabayashi, E. Aoyagi, and H. Nikaido: “Transmission Electron Microscopy Study on Microstructure of Tungsten/Carbon Multilayer Films,” Jpn. J. Appl. Phys., 1989, 28(10), pp. 1909–914.

    Article  ADS  Google Scholar 

  10. J. Gonzalez-Hernandez, B.S. Chao, and D.A. Pawlik: “Characterization of As-Prepared and Annealed W/C Multilayer Thin Films,” J. Vac. Sci. Technol. A, 1992, 10(1), pp. 145–51.

    Article  ADS  Google Scholar 

  11. J. Luthin and Ch. Linsmeier: “Carbon Films and Carbide Formation on Tungsten,” Surf. Sci., 2000, 454–56, pp. 78–79.

    Article  Google Scholar 

  12. D. Tu, S. Chang, C. Chao, and C. Lin: “Tungsten Carbide Phase Transformation During the Plasma Spray Process,” J. Vac. Sci. Technol. A, 1985, 3(6), pp. 2479–482.

    Article  ADS  Google Scholar 

  13. V. Verdon, A. Karimi, and J.-L. Martin: “A Study of High Velocity Oxy-Fuel Thermally Sprayed Tungsten Carbide Based Coatings. Part 1: Microstructures,” Mater. Sci. Eng. A., 1998, A246, pp. 11–24.

    Google Scholar 

  14. Y. Suda, T. Nakazono, K. Ebihara, K. Baba, and R. Hatada: “Properties of WC Films Synthesized by Pulsed YAG Laser Deposition,” Mater. Chem. Phys., 1998, 54, pp. 177–80.

    Article  Google Scholar 

  15. S. Sharafat, A. Kobayashi, S. Chen, and N.M. Ghoniem: “Production of High-Density Ni-Bonded Tungsten Carbide Coatings Using an Axially Fed DC-Plasmatron,” Surf. Coat. Technol., 2000, 130, pp. 164–72.

    Article  Google Scholar 

  16. M.D. Demetriou, N.M. Ghoniem, and A.S. Lavine: “Kinetic Modeling of Phase Selection during Non-Equilibrium Solidification of a Tungsten-Carbon System,” Acta Mater., 2002 50(6), pp. 1421–432.

    Article  Google Scholar 

  17. J.H. Perepezko and W.J. Boettinger: “Use of Metastable Phase Diagrams in Rapid Solidification,” Mater. Res. Soc. Symp. Proc., 1983, 19, pp. 223–40.

    Google Scholar 

  18. C.H.P. Lupis: Chemical Thermodynamics of Materials, Elsevier, New York, 1983, pp. 56, 332.

    Google Scholar 

  19. R.L. Burden and J.D. Fairs: Numerical Analysis, 5th ed., PWS, Boston, 1993, pp. 56, 553.

    MATH  Google Scholar 

  20. B. Sundman, B. Jansson, and J-O. Anderson: “The Thermo-Calc Databank System,” CALPHAD, 1985, 9, pp. 153–90.

    Article  Google Scholar 

  21. F. Spaepen: “A Structural Model for the Solid-Liquid Interface in Monoatomic Systems,” Acta Metall., 1975, 23, pp. 729–43.

    Article  Google Scholar 

  22. M.D. Demetriou: Ph.D. Dissertation, University of California, Los Angeles, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demetriou, M.D., Ghoniem, N.M. & Lavine, A.S. Computation of metastable phases in tungsten-carbon system. JPE 23, 305 (2002). https://doi.org/10.1361/105497102770331550

Download citation

  • Received:

  • Revised:

  • DOI: https://doi.org/10.1361/105497102770331550

Keywords

Navigation