Skip to main content
Log in

Computational thermodynamics and the kinetics of martensitic transformation

  • Basic And Applied Research
  • Published:
Journal of Phase Equilibria

Abstract

To assist the science-based design of alloys with martensitic microstructure, a multicomponent database kMART (kinetics of MARtensitic Transformation) encompassing the components Al, C, Co, Cr, Cu, Fe, Mn, Mo, N, Nb, Ni, Pd, Re, Si, Ti, V, and W has been developed to calculate the driving force for martensitic transformation. Built upon the SSOL database of the Thermo-Calc software system, a large number of interaction parameters of the SSOL database have been modified, and many new interaction parameters, both binary and ternary, have been introduced to account for the heat of transformation, T 0 temperatures, and the composition dependence of magnetic properties. The critical driving force for face-centered cubic (fcc) → body-centered cubic (bcc) heterogeneous martensitic nucleation in multicomponent alloys is modeled as the sum of a strain energy term, a defect-size-dependent interfacial energy term, and a composition-dependent interfacial work term. Using our multicomponent thermodynamic database, a model for barrierless heterogeneous martensitic nucleation, a model for the composition and temperature dependence of the shear modulus, and a set of unique interfacial kinetic parameters, we have demonstrated the efficacy of predicting the fcc → bcc martensitic start temperature (M s ) in multicomponent alloys with an accuracy of ± 40 K over a very wide composition range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.A. Carapella: Met. Progr., 1944, vol. 46, p. 108.

    Google Scholar 

  2. P. Payson and C.H. Savage: Trans. ASM, 1944, vol. 33, p. 261.

    Google Scholar 

  3. E.S. Rowland and S.R. Lyle: Met. Progr., 1945, vol. 47, p. 907.

    Google Scholar 

  4. R.A. Grange and H.M. Stewart: Trans. AIME, 1946, vol. 167, p. 467.

    Google Scholar 

  5. A.E. Nehrenberg: Trans. AIME, 1946, vol. 167, p. 494.

    Google Scholar 

  6. G.H. Eichelmann, Jr. and F.C. Hull: Trans. ASM, 1953, vol. 45, p. 77.

    Google Scholar 

  7. W. Steven and A.G. Haynes: J. Iron Steel Inst., 1956, vol. 183, p. 349.

    Google Scholar 

  8. K.J. Irvine, F.B. Pickering, and J. Garstone: J. Iron Steel Inst., 1960, vol. 198, p. 66.

    Google Scholar 

  9. K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203, p. 721.

    Google Scholar 

  10. G.B. Olson: Proc. M.E. Fine Symp., P.K. Liaw, J.R. Weertman, H.L. Marcus, and J.S. Slater, eds., TMS, Warrendale, PA, 1991, p. 41

    Google Scholar 

  11. Thermo-Calc, version M, Foundation of Computational Thermodynamics, Royal Institute of Technology, Stockholm, 1998.

    Google Scholar 

  12. B. Sundman and J. Ågren: J. Phys. Chem. Solids, 1985, vol. 42, p. 297.

    Article  Google Scholar 

  13. M. Hillert and M. Jarl: CALPHAD, 1978, vol. 2, p. 227.

    Article  Google Scholar 

  14. O. Redlich and A. Kister: Ind. Eng. Chem., 1948, vol. 40, p. 345.

    Article  Google Scholar 

  15. G. Ghosh: kMART Database, Northwestern University, Evanston, IL, unpublished research, 2000.

    Google Scholar 

  16. Solution Database, Scientific Group Thermodata Europe, Division of Physical Metallurgy, Royal Institute of Technology, Stockholm, Sweden, 1994.

  17. L. Kaufman and M. Cohen: Trans. AIME, 1956, vol. 206, p. 1393.

    Google Scholar 

  18. K. Ishida and T. Nishizawa: Trans. Jpn. Inst. Met., 1974, vol. 15, p. 217.

    Google Scholar 

  19. L. Kaufman and M. Hillert: in Martensite, G.B. Olson and W.S. Owen, eds., ASM International, Materials Park, OH, 1992, p. 41.

    Google Scholar 

  20. E. Scheil and E. Saftig: Arch. Eisenhüttenwes., 1960, vol. 31, p. 623.

    Google Scholar 

  21. R.G.B. Yeo: Trans. AIME, 1963, vol. 227, p. 884.

    Google Scholar 

  22. C.E. Campbell: Ph.D. Thesis, Northwestern University, Evanston, IL, 1997.

    Google Scholar 

  23. E. Scheil and W. Normann: Arch. Eisenhüttenwes., 1959, vol. 30, p. 751.

    Google Scholar 

  24. A.J. Goldman and W.D. Robertson: Acta Metall., 1965, vol. 13, p. 391.

    Article  Google Scholar 

  25. M. Peschard: Rev. Met., 1925, vol. 22, p. 581.

    Google Scholar 

  26. J. Crangle and G.C. Hallam: Proc. R. Soc., 1963, vol. 272, p. 119.

    Article  ADS  Google Scholar 

  27. Y.-Y. Chuang, Y.A. Chang, R. Schmid, and J.-C. Lin: Metall. Trans. A, 1987, vol. 17A, p. 1361.

    ADS  Google Scholar 

  28. K. Hoselitz and W. Sucksmith: Proc. R. Soc. (London), 1943, vol. A181, p. 303.

    ADS  Google Scholar 

  29. Y.I. Kondorskiy and L.N. Fedotov: Izv. Akad. Nauk SSSR, 1952, vol. 16, p. 432.

    Google Scholar 

  30. C.G. Shull and M.K. Wilkinson: Phys. Rev., 1955, vol. 97, p. 304.

    Article  ADS  Google Scholar 

  31. M.F. Collins, R.V. Jones, and R.D. Lowde: J. Phys. Soc. Jpn., 1962, vol. 17, p. 19.

    Article  Google Scholar 

  32. Y. Bando: J. Phys. Soc. Jpn., 1964, vol. 19, p. 237.

    Article  ADS  Google Scholar 

  33. D.A. Colling: J. Appl. Phys., 1969, vol. 40, p. 1379.

    Article  ADS  Google Scholar 

  34. M. Nishi, Y. Nakai, and N. Kunitomi: J. Phys. Soc. Jpn., 1974, vol. 37, p. 570.

    Article  ADS  Google Scholar 

  35. H. Asano: Honda Mem. Ser. Mater. Sci., 1978, No. 3, p. 457.

  36. A.N. Moisin: Phys. Status Solidi, A, 1978, vol. 47, p. 305.

    Article  Google Scholar 

  37. I. Nakai: J. Phys. Soc. Jpn., 1983, vol. 52, p. 1781.

    Article  ADS  Google Scholar 

  38. I. Nakai, F. Ono, and O. Yamada: J. Phys. Soc. Jpn., 1983, vol. 52, p. 1791.

    Article  ADS  Google Scholar 

  39. D.H. Martin: in Magnetism in Solids, MIT Press, Cambridge, MA, 1967, p. 10.

    Google Scholar 

  40. C.E. Guilleaume: Compt. Rend. Acad. Sci (Paris), 1897, vol. 125, p. 235.

    Google Scholar 

  41. G. Gossels: Z. Anorg. Chem., 1929, vol. 182, p. 19.

    Article  Google Scholar 

  42. R.J. Wakelin and E.L. Yates: Proc. R. Soc. (London), 1953, vol. B66, p. 221.

    ADS  Google Scholar 

  43. G.F. Bolling and R.H. Richman: Acta Metall., 1970, vol. 18, p. 673.

    Article  Google Scholar 

  44. R.G. Davies and C.L. Magee, Metall. Trans., 1970, vol. 1, p. 2927.

    Google Scholar 

  45. R.G. Davies and C.L. Magee: Metall. Trans., 1971, vol. 2, p. 1939.

    Article  Google Scholar 

  46. C.L. Magee and R.G. Davies: Acta Metall., 1972, vol. 20, p. 1031.

    Article  Google Scholar 

  47. C. Kantner, G. Ghosh, and G.B. Olson: Northwestern University, Evanston, IL, research in progress, 2000.

  48. G.B. Olson and M. Cohen: Metall. Trans. A, 1976, vol. 7A, pp. 1905–15.

    ADS  Google Scholar 

  49. G.B. Olson and M. Cohen: in Dislocations in Solids, F.R.N. Nabarro, ed., North-Holland, Amsterdam, 1986, vol. 7, p. 297.

    Google Scholar 

  50. G.B. Olson, K. Tsuzaki, and M. Cohen: Turnbull Symp.: Phase Transtions in Condensed Systems, G.S. Cargill, F. Spaepen, and K.N. Tu, eds., Materials Research Society, Pittsburgh, PA, 1987, p. 129.

    Google Scholar 

  51. A.C.E. Reid and G.B. Olson: Mater. Sci. Eng., 1998, vols. A273–A275, p. 257.

    Google Scholar 

  52. A.C.E. Reid, G.B. Olson, and B. Moran: Phase Transitions, 1999, vol. 69, p. 309.

    Article  Google Scholar 

  53. L. Kaufman and M. Cohen: Progr. Met. Phys., 1958, vol. 7, p. 165.

    Article  ADS  Google Scholar 

  54. G. Ghosh and G.B. Olson: Acta Metall. Mater., 1994, vol. 42, p. 3361.

    Article  Google Scholar 

  55. G. Ghosh and G.B. Olson: Acta Metall. Mater., 1994, vol. 42, p. 3371.

    Article  Google Scholar 

  56. G. Ghosh and G.B. Olson: submitted to Acta Mater., 2001.

  57. M. Lin, G.B. Olson, and M. Cohen: Metall. Trans. A, 1992, vol. 23A, p. 2991.

    ADS  Google Scholar 

  58. T.J. Koppenaal and D. Kuhlmann-Wilsdorf: Appl. Phys. Lett., 1964, vol. 4, p. 59.

    Article  ADS  Google Scholar 

  59. A.J. Goldman and W.D. Robertson: Acta Metall., 1964, vol. 12, p. 1265.

    Article  Google Scholar 

  60. Atlas for Time-Temperature Diagrams for Iron and Steels, G.F. Vander Voort, ed., ASM International, Materials Park, OH, 1991.

  61. U.R. Lenel and B.R. Knott: Metall. Trans. A, 1987, vol. 18A, p. 767.

    ADS  Google Scholar 

  62. J.C. Brachet: J. Phys. IV, 1995, Coll. C8, vol. 5, pp. C8–339.

    Article  Google Scholar 

  63. T. Cool and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1996, vol. 12, p. 40.

    Google Scholar 

  64. H. Finkler and M. Schirra: Steel Res., 1996, vol. 67, p. 328.

    Google Scholar 

  65. H. Nakagawa and T. Miyazaki: Tetsu-to-Hagańe, 1999, vol. 85, p. 49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, G., Olson, G.B. Computational thermodynamics and the kinetics of martensitic transformation. JPE 22, 199–207 (2001). https://doi.org/10.1361/105497101770338653

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105497101770338653

Keywords

Navigation