Advertisement

Journal of Thermal Spray Technology

, Volume 7, Issue 3, pp 357–373 | Cite as

Powder/processing/structure relationships in WC-Co thermal spray coatings: A review of the published literature

  • H. L. de Villiers Lovelock
Revieweed Papers

Abstract

Thermally sprayed coatings based on tungsten carbide are widely used but not yet fully understood, particularly with regard to the chemical, microstructural, and phase changes that occur during spraying and their influence on properties such as wear resistance. The available literature on thermally sprayed WC-Co coatings is considerable, but it is generally difficult to synthesize all of the findings to obtain a comprehensive understanding of the subject. This is due to the many different starting powders, spray system types, spray parameters, and other variables that influence the coating structures and cause difficulties when comparing results from different workers.

The purpose of this review is to identify broad trends in the powder/processing/structure relationships of WC-Co coatings, classified according to powder type and spray method. Detailed comparisons of coating microstructures, powder phase compositions and coating phase compositions as reported by different researchers are given in tabular form and discussed. The emphasis is on the phase changes that occur during spraying. This review concerns only WC-12% Co and WC-17% Co coatings, and contrasts the coatings obtained from the cast and crushed, sintered and crushed, and agglomerated and densified powder types. Properties such as hardness, wear, or corrosion resistance are not reviewed here.

Keywords

coating properties feedstock morphology literature survey WC-Co coatings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.E. Exner, Physical and Chemical Nature of Cemented Carbides, Int. Met. Rev., Vol 24, 1979, p 149Google Scholar
  2. 2.
    S. Rangaswamy and H. Herman, Metallurgical Characterization of WC-Co Coatings, Advances in Thermal Spraying, Pergamon Press, 1986, p 101–110Google Scholar
  3. 3.
    W. Schedler, Hard Metals for Practical Users (original title: Hartmetall für den Praktiker), VDI-Verlag, Düsseldorf, 1988, p 5–29 (in German)Google Scholar
  4. 4.
    H. Baker and H. Okamoto, Alloy Phase Diagrams, Vol 3, ASM Handbook, ASM International, 1992, p 2.115Google Scholar
  5. 5.
    D. Tu, S. Chang, C. Chao, and C. Lin, Tungsten Carbide Phase Transformation During the Plasma Spray Process, J. Vac. Sci. Technol., Vol A3 (No. 6), 1985, p 2479–2482Google Scholar
  6. 6.
    P. Rautala and T. Norton, Proc. 1st Plansee Seminar, Plansee, Reutte, Austria, 1952, p 303–316Google Scholar
  7. 7.
    G. Barbezat, E. Müller, and B. Walser, Metallurgy and Properties of Tungsten Carbide-Cobalt Coatings Produced using the Jet Kote Process, VDI-Ber., Vol 670, 1988, p 853–872 (in German)Google Scholar
  8. 8.
    C.B. Pollock and H.H. Stadelmaier, The Eta Carbides in the Fe-W-C and Co-W-C Systems, Metall. Trans., Vol 1, 1970, p 767–770Google Scholar
  9. 9.
    V.K. Sarin, Morphology of Eta Phase in Cemented WC-Co Alloys, Modern Developments Powder Metallurgy, Vol 10, Metal Powder Industries Federation, 1977, p 553–565Google Scholar
  10. 10.
    L. Åkesson, An Experimental and Thermodynamic Study of the Co-W-C System in the Temperature Range 1470–1700 K, Science of Hard Materials, Proc. Int. Conf., 23–28 Aug (Jackson, WY), Plenum Press, 1983, p 71–82Google Scholar
  11. 11.
    C. Verdon, “Microstructure and Erosion Resistance of WC-M Coatings Deposited by HVOF Thermal Spraying” (original title: “Microstructure et Résistance à l’Érosion de Revêtements WC-M Déposés par Projection Thermique HVOF”), Ph.D. Thesis No. 1393, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, 1995 (in French)Google Scholar
  12. 12.
    J.M. Guilemay, J. Nutting, and J.M. de Paco, Characterization of Three WC + 12Co Powders and the Coatings Obtained by High-Velocity-Oxygen-Fuel Spraying, Proc. Fourth European Conf. Adv. Mater. Processe (EUROMAT), 25–28 Sept 1995 (Venice), Assoc. Italiana di Metallurgica, Milan, 1996, p 395–398Google Scholar
  13. 13.
    J.M. Guilemay and J.M. de Paco, Structure/Properties Relationship of WC + Co Coatings Obtained by HVOF Spraying Using Starting Powders with Different Content in the Metallic Matrix, No. DVS 175, Proc. Therm. Spray Conf. TS ’96, Deutsche Verband für Schweisstechnik, Düsseldorf, 1996, p 390–393Google Scholar
  14. 14.
    D.J. Varacalle, G.R. Smolik, G.C. Wilson, G. Irons, and A. Walter, An Evaluation of Tungsten Carbide-Cobalt Coatings Fabricated with the Plasma Spray Process, Protective Coatings: Processing and Characterization, R.M. Yazici, Ed., The Minerals, Metals and Materials Society, 1990, p 121–134Google Scholar
  15. 15.
    G. Barbezat, High-Velocity Flame Spraying of Protective Coatings, Metalloberfläche, Vol 43 (No. 10), 1989, p 459–466 (in German)Google Scholar
  16. 16.
    T. Tomita, Y. Takatani, Y. Kobayashi, Y. Harada, and H. Nakahira, Durability of WC/Co Sprayed Coatings in Molten Pure Zinc, ISIJ Int., Vol 33 (No. 9), 1993, p 982–988; first published in Tetsu-to-Hagané, Vol 78, 1992 (in Japanese)Google Scholar
  17. 17.
    K. Korpiola and P. Vuoristo, Effect of HVOF Gas Velocity and Fuel to Oxygen Ratio on the Wear Properties of Tungsten Carbide Coating, Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, Ed., ASM International, 1996, p 177–184Google Scholar
  18. 18.
    H.L. de Villiers Lovelock, J. Kinds, and P.M. Young, Characterization of WC 12%Co Thermal Spray Powders and HP/HVOF Coatings, Powder Metall., accepted for publicationGoogle Scholar
  19. 19.
    V. Ramnath and N. Jayaraman, Characterization Wear Performance of Plasma Sprayed WC-Co Coatings, Mater. Sci. Technol., Vol 5, 1989, p 382–388Google Scholar
  20. 20.
    H.J. Kim, Y.G. Kweon, and R.W. Chang, Wear and Erosion Behavior of Plasma-Sprayed WC-Co Coatings, J. Therm. Spray Technol., Vol 3 (No. 2), 1994, p 169–178CrossRefGoogle Scholar
  21. 21.
    D.J. Varacalle, Jr., E. Acosta, J. Figert, M. Syma, J. Worthington, and D. Carrillo, Experimental/Analytical Investigations of Air Plasma Spray Tungsten Carbide-Cobalt Coatings at Kelly Air Force Base, Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, Ed., ASM International, 1996, p 699–707Google Scholar
  22. 22.
    P. Mazars, D. Manesse, and C. Lopvet, Structure of Tungsten Carbide Coatings Obtained by Different Spray Processes, Advances in Thermal Spraying, Pergamon Press, 1986, p 111–120; also published in Soudage Tech. Connexes, Vol 41 (No. 1–2), 1987, p 36–42 (in French)Google Scholar
  23. 23.
    T.A. Mäntylä, K.J. Niemi, P.M.J. Vuoristo, G. Barbezat, and A.R. Nicoll, Abrasion Wear Resistance of Tungsten Carbide Coatings Prepared by Various Thermal Spraying Techniques, Second Plasma-Technik Symposium, Vol 1, S. Blum-Sandmeier, H. Eschnauer, P. Huber, and A. Nicoll, Ed., Sulzer Metco AG, Wohlen, Switzerland, 1991, p 287–297Google Scholar
  24. 24.
    J.E. Nerz, B.A. Kushner, and A.J. Rotolico, Effects of Deposition Methods on the Physical Properties of Tungsten Carbide-12 wt% Cobalt Thermal Spray Coatings, Protective Coatings: Processing and Characterization, R.M. Yazici, Ed., The Minerals, Metals and Materials Society, 1990, p 133–143Google Scholar
  25. 25.
    J.E. Nerz, B.A. Kushner, and A.J. Rotolico, Relationship between Powder Processing and Deposition Methods for Aircraft Grade Tungsten Carbide-Cobalt Coatings, Publication No. DVS 130, Proc. Therm. Spray Conf. TS90, 29–31 Aug 1990 (Essen, Germany), Deutsche Verband für Schweisstechnik, 1992, p 47–51; also published in Proc. Asian Aerospace Conf., 1990, SingaporeGoogle Scholar
  26. 26.
    M.R. Dorfman, B.A. Kushner, J. Nerz, and A.J. Rotolico, A Technical Assessment of High Velocity Oxygen-Fuel versus High Energy Plasma Tungsten Carbide-Cobalt Coatings for Wear Resistance, Proc. 12th Int. Thermal Spray Conf. (London), I.A. Bucklow, Ed., The Welding Institute, London, 1989, p 108.1–108.12Google Scholar
  27. 27.
    J.E. Nerz, B.A. Kushner, and A.J. Rotolico, Characterization of Tungsten Carbide Coatings as a Function of Powder Manufacturing and Deposition Technologies, High Performance Ceramic Films and Coatings, Vol 67, Materials Science Monograph, 1991, p 27–36Google Scholar
  28. 28.
    S.Y. Hwang, B.G. Seong, and M.C. Kim, Characterization of WC-Co Coatings Using HP/HVOF Process, Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, Ed., ASM International, 1996, p 107–112Google Scholar
  29. 29.
    H. Kreye, Optimization and Control of the Spray Conditions in the Jet Kote Process, Thermal Spray Technology—New Ideas and Processes, D.L. Houck, Ed., ASM International, 1989, p 39–45Google Scholar
  30. 30.
    H. Kreye, D. Fandrich, H.H. Müller, and G. Reiners, Microstructure and Bond Strength of WC-Co Coatings Deposited by Hypersonic Flame Spraying (Jet Kote Process), Advances in Thermal Spraying, Proc. 11th Int. Thermal Spray Conf., 8–12 Sept 1986 (Montreal, Canada), Pergamon Press, 1986 p 121–128Google Scholar
  31. 31.
    Y. Arata, A. Ohmori, and E. Gofuku, WC-Co High Energy Thermal Sprayed Coatings, Trans. Jpn. Weld. Res. Inst., Vol 14 (No. 2), 1985, p 67–73Google Scholar
  32. 32.
    T.P. Slavin and J. Nerz, Material Characteristics and Performance of WC-Co Wear Resistant Coatings, Thermal Spray Research and Applications, T.F. Bernecki, Ed., ASM International, 1991, p 159–165Google Scholar
  33. 33.
    P. Vuoristo, K. Niemi, A. Mäkelä, and T. Mäntylä, Spray Parameter Effects on Structure and Wear Properties of Detonation Gun Sprayed WC + 17% Co Coatings, Thermal Spray: Research, Design, and Applications, C.C. Berndt and T.F. Bernecki, Ed., ASM International, 1993, p 173–178Google Scholar
  34. 34.
    S.F. Wayne and S. Sampath, Structure/Property Relationships in Sintered and Thermally Sprayed WC-Co, J. Therm. Spray Technol., Vol 1 (No. 4), 1992, p 307–315CrossRefGoogle Scholar
  35. 35.
    K. Niemi, P. Vuoristo, T. Mäntylä, G. Barbezat, and A.R. Nicoll, Abrasion Wear Resistance of Carbide Coatings Deposited by Plasma and High Velocity Combustion Processes, Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, Ed., ASM International, 1992, p 685–689Google Scholar
  36. 36.
    A. Karimi, Ch. Verdon, J.L. Marin, and R.K. Schmid, Slurry Erosion Behaviour of Thermally Sprayed WC-M Coatings, Wear, Vol 186–187, 1995, p 480–486CrossRefGoogle Scholar
  37. 37.
    W.J. Jarosinski, M.F. Gruninger, and C.H. Londry, Characterization of Tungsten Carbide Cobalt Powders and HVOF Coatings, Thermal Spray: Research, Design, and Applications, C.C. Berndt and T.F. Bernecki, Ed., ASM International, 1993, p 153–157Google Scholar
  38. 38.
    N. Wagner, K. Gnädig, H. Kreye, and H. Kronewetter, Particle Velocity in Hypersonic Flame Spraying of WC-Co, Surf. Technol., Vol 22, 1984, p 61–71CrossRefGoogle Scholar
  39. 39.
    D.C. Crawmer, J.D. Krebsbach, and W.L. Riggs, Coating Development for HVOF Process Using Design of Experiments, Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, Ed., ASM International, 1992, p 127–136Google Scholar
  40. 40.
    Y. Naerheim, C. Coddet, and P. Droit, Effect of Thermal Spray Process Selection on Tribological Performance of WC-Co and Al2O3-TiO2 Coatings, Surf. Eng., Vol 11 (No. 1), 1995, p 66–70Google Scholar
  41. 41.
    C.-J. Li, A. Ohmori, and Y. Harada, Effect of Powder Structure on the Structure Of Thermally Sprayed WC-Co Coatings, J. Mater. Sci., Vol 31, 1996, p 785–794CrossRefGoogle Scholar
  42. 42.
    N. Wagner, H. Kreye, and H. Kestel, Production of Wear Resistant WC-Co Coatings Using Hypersonic Flame Spraying, Z. Werkstofftech., Vol 16, 1985, p 55–60 (in German)CrossRefGoogle Scholar
  43. 43.
    M.S.A. Khan and T.W. Clyne, Microstructure and Abrasion Resistance of Plasma Sprayed Cermet Coatings, Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, Ed., ASM International, 1996, p 113–122Google Scholar
  44. 44.
    J.R. Fincke, W.D. Swank, and D.C. Haggard, Comparison of the Characteristics of HVOF and Plasma Thermal Spray, Thermal Spray Industrial Applications, C.C. Berndt and S. Sampath, Ed., ASM International, 1994, p 325–330Google Scholar
  45. 45.
    J. Subrahmanyam, M.P. Srivastava, and R. Sivakumar, Characterization of Plasma Sprayed WC-Co Coatings, Mater. Sci. Eng., Vol 84, 1986, p 209–214CrossRefGoogle Scholar
  46. 46.
    M. Witold, Plasma Gun Spraying of WC and WC-Co Powders, Powloki Ochr., Vol 2 (No. 2), 1974, p 13–23Google Scholar
  47. 47.
    A. Karimi, Ch. Verdon, and G. Barbezat, Microstructure and Hydroabrasive Wear Behaviour of High Velocity Oxy-Fuel Thermally Sprayed WC-Co(Cr) Coatings, Surf. Coat. Technol., Vol 57, 1993, p 81–89CrossRefGoogle Scholar
  48. 48.
    H. Takigawa, M. Hirata, M. Koga, M. Itoh, and K. Takeda, Applications of Hard Coating by Low-Pressure Plasma Spray, Surf. Coat. Technol., Vol 39/40, 1989, p 127–134CrossRefGoogle Scholar
  49. 49.
    D. Ghosh, D. Lamy, T. Sopkow, and I. Smuga-Otto, The Effects of Plasma Spray Parameters and Atmospheres on the Properties and Microstructure of WC-Co Coatings, Proc. 24th Int. SAMPE Technical Conf., 20–22 Oct 1992 (Toronto), Vol 24, T.S. Reinhardt, Ed., Society for Advancement of Material and Process Engineering, 1992, p T28–T42Google Scholar
  50. 50.
    G. Barbezat, A.R. Nicoll, and A. Sickinger, Abrasion, Erosion and Scuffing Resistance of Carbide and Oxide Ceramic Thermal Spray Coatings for Different Applications, Wear, Vol 162–164, 1993, p 529–537CrossRefGoogle Scholar
  51. 51.
    B.A. Detering, J.R. Knibloe, and T.L. Eddy, Occurrence of Tungsten Plasma in Plasma Spraying of WC/Co, Thermal Spray Research and Applications, T.F. Bernecki, Ed., ASM International, 1991, p 27–31Google Scholar
  52. 52.
    B. Schultrich, L.-M. Berger, J. Henke, and A. Oswald, Influence of Carbide Powder Composition on Decarburization During Air Plasma Spraying, Second Plasma-Technik Symposium, Vol 2, S. Blum-Sandmeier, H. Eschnauer, P. Huber, and A. Nicoll, Ed., Sulzer Metco AG, Wohlen, Switzerland, 1991, p 363–371Google Scholar
  53. 53.
    A. Karimi and Ch. Verdon, Hydroabrasive Wear Behaviour of High Velocity Oxyfuel Thermally Sprayed WC-M Coatings, Surf. Coat. Technol., Vol 62, 1993, p 493–498CrossRefGoogle Scholar
  54. 54.
    M.E. Vinayo, F. Kassabji, J. Guyonnet, and P. Fauchais, Plasma Sprayed WC-Co Coatings: Influence of Spray Conditions (Atmospheric and Low Pressure Plasma Spraying) on the Crystal Structure, Porosity and Hardness, J. Vac. Sci. Technol., Vol A3 (No. 6), 1985, p 2483–2489Google Scholar
  55. 55.
    A. Tronche and P. Fauchais, Hard Coatings (Cr2O3, WC-Co) Properties on Aluminium or Steel Substrates, Mater. Sci. Eng., Vol 92, 1987, p 133–144CrossRefGoogle Scholar
  56. 56.
    S. Basinski-Pampuch and T. Gibas, Observations on Some Plasma-Sprayed Metal Carbides, Ceram. Int., Vol 3 (No. 4), 1977, p 152–158CrossRefGoogle Scholar
  57. 57.
    L.-M. Berger, B. Schultrich, A. Oswald, and H. Preiss, Influence of Carbide Powder Composition on Decarburization and Properties of Air Plasma Sprayed Coatings, Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, Ed., ASM International, 1992, p 253–258Google Scholar
  58. 58.
    M.G.S. Naylor, Development of Wear-Resistant Ceramic Coatings for Diesel Engine Components, Vol 1, Report DE 92 041382, Oak Ridge National Laboratory Reference ORNL/Sub/87-SA581/1, National Technical Information Service, U.S. Dept. of Commerce, 1992Google Scholar
  59. 59.
    Ch. Heinzelmaier and K.K. Schweitzer, WC-Co Coatings for Protection against Hammer Wear in Flight Engines, Publication No. DVS 130, Proc. Thermal Spray Conf. TS90, 29–31 Aug 1990 (Essen, Germany), Deutsche Verband für Schweisstechnik, Düsseldorf, 1990, p 51–54Google Scholar
  60. 60.
    W.J. Lenling, M.F. Smith, and J.A. Henfling, Process for Producing Plasma Sprayed Carbide-Based Coatings with Minimal Decarburization and Near Theoretical Density, Thermal Spray Research and Applications, T.F. Bernecki, Ed., ASM International, 1991, p 451–455Google Scholar
  61. 61.
    P.L. Kuhanen and P.O. Kettunen, Comparison of Plasma and Detonation Gun Sprayed Tungsten Carbide-Cobalt Coatings, Publication No. DVS 152, Proc. Thermal Spray Conf. TS93, 3–5 March 1993, (Aachen, Germany), Deutsche Verband für Schweisstechnik, Düsseldorf, 1993, p 100–102Google Scholar
  62. 62.
    V.V. Sobolev, J.M. Guilemay, and J.A. Calero, Formation of Structure of WC-Co Coatings on Aluminium Alloy Substrate During High-Velocity Oxy-Fuel (HVOF) Spraying, J. Therm. Spray Technol., Vol 4 (No. 4), 1995, p 401–407CrossRefGoogle Scholar
  63. 63.
    J.E. Nerz, B.A. Kushner, and A.J. Rotolico, Microstructural Evaluation of Tungsten Carbide-Cobalt Coatings, J. Therm. Spray Technol., Vol 1 (No. 2), 1992, p 147–152CrossRefGoogle Scholar
  64. 64.
    L.-M. Berger, P. Vuoristo, T. Mäntylä, W. Kunert, W. Lengauer, and P. Ettmayer, Microstructure and Properties of WC-Co-Cr Coatings, Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, Ed., ASM International, 1996, p 97–106Google Scholar
  65. 65.
    C.-J. Li, A. Ohmori, and Y. Harada, Formation of an Amorphous Phase in Thermally Sprayed WC-Co, J. Therm. Spray Technol., Vol 5 (No. 1), 1996, p 69–73CrossRefGoogle Scholar
  66. 66.
    J.M. Guilemay, V.V. Sobolev, J. Nutting, Z. Dong, and J.A. Calero, Thermal Interaction between WC-Co Coating and Steel Substrate in Process of HVOF Spraying, Scr. Metall. Mater., Vol 31 (No. 7), 1994, p 915–920CrossRefGoogle Scholar
  67. 67.
    J. Nutting, J.M. Guilemay, and Z. Dong, Substrate/Coating Interface Structure of WC-Co HVOF Sprayed Coatings on to Low Alloy Steel, Mater. Sci. Technol., Vol 11 (No. 9), 1995, p 961–966Google Scholar
  68. 68.
    J.M. Guilemay, J. Nutting, J.R. Miguel, and Z. Zong, Microstructure Characterization of WC-Ni Coatings Obtained by HVOF Thermal Spraying, Scr. Metall. Mater., Vol 33 (No. 1), p 55–61Google Scholar
  69. 69.
    L.E. McCandlish, B.H. Kear, B.K. Kim, and L.W. Wu, Low Pressure Plasma Sprayed Coatings of Nanophase WC-Co, Protective Coatings: Processing and Characterization, R.M. Yazici, Ed., The Minerals, Metals and Materials Society, 1990, p 113–119Google Scholar
  70. 70.
    N. Iwamoto, M. Kamai, and G. Ueno, Examination of Tungsten Carbide Coatings for Thermal Cycling Using NDT, Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, Ed., ASM International, 1992, p 405–414Google Scholar
  71. 71.
    L. Giordano, A. Tiziani, A. Zambon, S. Pitteri, and G. Talentino, Comparison between WC-Co Coatings Obtained by APS and CDS on Carbon Steel, Proc. Second Eur. Conf. Adv. Mater. Processes 1991, Vol. 1, Clyne and Withers, Ed., Institute of Materials, London, 1992, p 307–315Google Scholar
  72. 72.
    C.M. Hackett and G.S. Settles, Turbulent Mixing of the HVOF Thermal Spray and Coating Oxidation, Thermal Spray Industrial Applications, C.C. Berndt and S. Sampath, Ed., ASM International, 1994, p 307–312Google Scholar
  73. 73.
    W.D. Swank, J.R. Fincke, D.C. Haggard, and G. Irons, HVOF Gas Flow Field Characteristics, Thermal Spray Industrial Applications, C.C. Berndt and S. Sampath, Ed., ASM International, 1994, p 313–318Google Scholar
  74. 74.
    W.D. Swank, J.R. Fincke, D.C. Haggard, G. Irons, and R. Bullock, HVOF Particle Flow Field Characteristics, Thermal Spray Industrial Applications, C.C. Berndt and S. Sampath, Ed., ASM International, 1994, p 319–324Google Scholar
  75. 75.
    Y. Wang and P. Kettunen, The Optimization of Spraying Parameters for WC-Co Coatings by Plasma and Detonation-Gun Spraying, Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, Ed., ASM International, 1992, p 575–580Google Scholar
  76. 76.
    M.L. Thorpe and H.J. Richter, A Pragmatic Analysis and Comparison of HVOF Processes, J. Therm. Spray Technol., Vol 1 (No. 2), 1992, p 161–170CrossRefGoogle Scholar
  77. 77.
    Z.Z. Mutasim, R.W. Smith, and L. Sokol, Vacuum Plasma Spray Deposition of WC-Co, Thermal Spray Research and Applications, T.F. Bernecki, Ed., ASM International, 1991, p 165–169Google Scholar
  78. 78.
    G.V. Bobrov, V.B. Shekhov, G.M. Bluykher, and T.E. Fomina, Reducing Carbon Losses During the Plasma Torch Spraying of Tungsten Carbides, Proc. Conf. Poluch. Pokrytii Vysokotemp. Raspylenium, L.K. Druzhinin, Ed., Atomizdat, Moscow, 1973, p 245–255Google Scholar
  79. 79.
    X. Provot, H. Burlet, M. Vardavoulias, M. Jeandin, C. Richard, J. Lu, and D. Manesse, Comparative Studies of Microstructure, Residual Stress Distributions and Wear Properties for HVOF and APS WC-Co Coatings on Ti6Al4V, Thermal Spray: Research, Design, and Applications, C.C. Berndt and T.F. Bernecki, Ed., ASM International, 1993, p 159–166Google Scholar
  80. 80.
    J. Beczkowiak, J. Fischer, and G. Schwier, Cermets for High Velocity Flame Spraying, Publication No. DVS 152, Proc. Therm. Spray Conf. TS93, 3–5 March 1993 (Aachen, Germany), Deutsche Verband für Schweisstechnik, Düsseldorf, 1993, p 32–36 (in German)Google Scholar
  81. 81.
    K.S. Zhou, D.J. Yang, A.Q. Zeng, and P.Y. Qi, WC-Cr-Co Coating for Mandrel of Precision Forging Machine, Thermal Spray: International Advances in Coatings Technology, C.C. Berndt, Ed., ASM International, 1992, p 393–398Google Scholar
  82. 82.
    L.C. Mei, W.H. Yang, D.M. Du, and L.W. Huang, Characteristics of Two Types of WC-Co Thermal Spraying Powder, Proc. Int. Conf. Modern Developments in Powder Metallurgy, Vol 17, 1985, p 251–271Google Scholar
  83. 83.
    C.-J. Li, A. Ohmori, and Y. Harada, Effect of WC Size on the Formation Process of HVOF Sprayed WC-Co Coatings, Proc. 14th Int. Therm. Spray Conf., 22–26 May 1995 (Kobe, Japan), A. Ohmori, Ed., Japan High Temperature Society, 1995, p 869–875Google Scholar

Copyright information

© ASM International 1998

Authors and Affiliations

  • H. L. de Villiers Lovelock
    • 1
  1. 1.CSIRPretoriaSouth Africa

Personalised recommendations