Journal of Thermal Spray Technology

, Volume 15, Issue 4, pp 593–597

Comparison of atmospheric plasma sprayed anode layers for SOFCs using different feedstock

  • D. Hathiramani
  • R. Vaßen
  • D. Stöver
  • R. J. Damani
Reviewed Papers

Abstract

Atmospheric plasma spraying (APS) is a cost-effective way to produce solid oxide fuel cell (SOFC) components. When using APS, therefore, sinter steps can be avoided, which is essential once a metallic support is used for the SOFC. Several properties are required regarding the microstructure of an optimized anode layer. Here, gas permeability, electrochemistry, electronic conductivity, coefficient of thermal expansion, as well as thermal shock resistance have to be considered. Different types of powder feedstock were investigated to develop an atmospheric plasma sprayed anode layer: (a) NiO or Ni together with YSZ as starting materials, (b) agglomerates in which NiO and YSZ are already mixed on a submicrometer range, (c) blended NiO/YSZ powder, and (d) separate injection of the individual NiO and YSZ powders, respectively, into the plasma by two separate powder lines. The performance of APS anodes are measured in single fuel-cell tests. Anode layers sprayed by a separate injection of the individual NiO and YSZ powders into the plasma show the best results.

Keywords

cermet coatings fuel cells production/preparation technology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Itoh, M. Mori, N. Mori, and T. Abe, Production Cost Estimation of Solid Oxide Fuel Cells,J. Powder Sources, 1994,49, p 315–332CrossRefGoogle Scholar
  2. 2.
    D.W. Dees, T.D. Claar, T.E. Easter, D.C. Fee, and F.C. Mrazek, Conductivity of Porous Ni/ZRO2-Y2O3 Cermets,J. Electrochem. Soc., 1987,134(9), p 2141–2146CrossRefGoogle Scholar
  3. 3.
    H. Fukunaga, M. Ihara, K. Sakaki, and K. Yamada, The Relationship between Overpotential and the Three Phase Boundary Length,Solid State Ionics, 1996,86–88(Part 2), p 1179–1185CrossRefGoogle Scholar
  4. 4.
    S. Takenoiri, N. Kawokawa, and K. Koseki, Development of Metallic Substrate Supported Planar Solid Oxide Fuel Cells Fabricated by Atmospheric Plasma Spraying,J. Therm. Spray Technol., 2000,9(3), p 360–363CrossRefGoogle Scholar
  5. 5.
    P. Szabo, M. Lang, T. Franco, and G. Schiller, Fabrication and Development of Optimized Plasma-Sprayed SOFC Layers for Use in the DLR Spray Concept,Proc. Sixth European SOFC Forum (Lucerne/Switzerland), June 28 to July 2, 2004, M. Mogensen, Ed., European Fuel Cell Forum, 2004, p 259–267Google Scholar
  6. 6.
    R. Zheng, X.M. Zhou, S.R. Wang, T.-L. Wen, and C.X. Ding, A Study Ni + 8YSZ/8YSZ/La0.6Sr0.4CoO3-d ITSOFC Fabricated by Atmospheric Plasma Spraying,J. Power Sources, 2005,140(2), p 217–225CrossRefGoogle Scholar
  7. 7.
    H. Weckmann, O. Finkenwirth, R. Henne, and A. Refke, Microstructure of Ni-Graphite/YSZ Composite Coatings on Porous Metallic Substrates Obtained by Atmospheric Plasma Spraying (APS),Thermal Spray 2005: Advances in Technology and Application (Basel/Switzerland), May 2–4, 2005, E. Lugscheider, Ed., DVS, 2005, p 100–105Google Scholar
  8. 8.
    M. Lang, T. Franco, M. Johnson, G. Schiller, and P. Szabo, Characterization of Vacuum Plasma Sprayed Planar Solid Oxide Fuel Cells During Reduction-Oxidation Cycling,Proc. Sixth European SOFC Forum (Lucerne/Switzerland), June 28 to July 2, 2004, M. Mogensen, Ed., European Fuel Cell Forum, 2004, p 877–886Google Scholar
  9. 9.
    Crofer 22 APU, Material Data Sheet No. 8005, ThyssenKrupp VDM GmbHGoogle Scholar
  10. 10.
    R. Vaßen, D. Hathiramani, R.J. Damani, and D. Stöver, Gas-Tight Zirconia Electrolyte Layers for SOFCs by Atmospheric Plasma-Spraying,SOFC IX (Quebec City, Canada), May 15–20, 2005, S.C. Singhal and J. Mizusaki, Ed., The Electrochemical Society, 2005, p 1016–1024Google Scholar
  11. 11.
    H. Luhleich, J. Dias, and H. Nickel, The Coat-Mix Procedure Using Carbon Fillers,Carbon, 1997,35(1), p 95–102CrossRefGoogle Scholar
  12. 12.
    H. Zoz and D. Ernst, Mechanical Alloying Using Cycle Operation—A New Way to Synthesize CMB-Materials,Fifth Int. Conf. on Advanced Particulate Materials and Processes (West Palm Beach, FL), April 7–9, 1997, F.H. Froes, Ed., 1997, p 103–111Google Scholar
  13. 13.
    D. Hathiramani, A. Mobeen, W. Fischer, P. Lersch, D. Sebold, R. Vaßen, D. Stöver, and R.J. Damani, Simultaneous Deposition of LSM and YSZ for SOFC Cathode Functional Layers by an APS Process,Thermal Spray 2005: Advances in Technology and Application (Basel/Switzerland), May 2–4, 2005, E. Lugscheider, Ed., DVS, 2005, p 585–589Google Scholar

Copyright information

© ASM International 2006

Authors and Affiliations

  • D. Hathiramani
    • 1
  • R. Vaßen
    • 1
  • D. Stöver
    • 1
  • R. J. Damani
    • 2
  1. 1.Forschungszentrum Jülich GmbHInstitute for Materials and Processes in Energy SystemsJülichGermany
  2. 2.Sulzer InnotecSulzer Markets and Technology Ltd.WinterthurSwitzerland

Personalised recommendations