Journal of Thermal Spray Technology

, Volume 14, Issue 3, pp 335–341 | Cite as

High-velocity oxyfuel Cr3C2-NiCr replacing hard chromium coatings

  • J. M. Guilemany
  • N. Espallargas
  • J. Fernández
  • P. H. Suegama
  • A. V. Benedetti
Reviewed Papers


Comparative wear and corrosion properties of Cr3C2-NiCr (CC-TS) (a high-velocity oxyfuel [HVOF]) and hard chromium (HC) coatings obtained on a steel substrate have been studied. The structural characterization was done before and after measurements by optical microscopy, scanning electron microscopy, and scanning white light interferometry. Wear and corrosion properties were evaluated by ball on disk (ASTM G99-90), rubber wheel (ASTM G65-91), and electrochemical measurements of open circuit and polarization curves. The best corrosion and wear resistance was for the CC-TS obtained by HVOF. The open-circuit potential values measured for both samples after 18 h of immersion were: −0.240 and −0.550 V, respectively, for CC-TS and HC, versus Ag/AgCl,KClsat. Three orders of magnitude lower volume loss were found for CC-TS (HVOF) after friction tests compared with HC.


corrosion resistance Cr3C2-NiCr hard chromium high-velocity oxyfuel thermal spray wear 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Fedrizzi, S. Rossi, F. Bellei, and F. Deflorian, Wear Corrosion Mechanism of Hard-Chromium Coatings, Wear, Vol 253, 2002, p 1173–1181CrossRefGoogle Scholar
  2. 2.
    J.K. Dennis and T.E. Such, Nickel and Chromium Plating, Woodhead Publishing Ltd., 3rd ed., 1993Google Scholar
  3. 3.
    U. Erning and M. Nestler, HVOF Coatings for Hard-Chrome Replacement Properties and Applications, Tagungsband Conference Proceedings, E. Lugscheider and R.A. Kammer, Ed., March 17–19, 1999 (Düsseldorf, Germany), DVS Deutscher Verband für Schweißen, p 462–466Google Scholar
  4. 4.
    T. Sahraoui, S. Guessasma, N.E. Fenineche, G. Montavon, and C. Coddet, Friction and Wear Behaviour of HVOF Coatings and Electroplated Hard Chromium Using Neural Computation, Mater. Lett., Vol 58, 2004, p 654–660CrossRefGoogle Scholar
  5. 5.
    A.C. Savarimuthu, I. Megat, H.F. Taber, J.R. Shadley, E.F. Rybicki, W.A. Emery, J.D. Nuse, and D.A. Somerville, Sliding Wear Behaviour as a Criterion for Replacement of Chromium Electroplate by Tungsten Carbide (WC) Thermal Spray Coatings in Aircraft Applications, Thermal Spray: Surface Engineering via Applied Research, C.C. Berndt, Ed., May 8–11, 2000 (Montréal, Québec, Canada), ASM International, p 1095–1104Google Scholar
  6. 6.
    P.L. Ko and M.F. Robertson, Wear Characteristics of Electrolytic Hard Chrome and Thermal Sprayed WC-10Co-4Cr Coatings Sliding against Al-Ni-Bronze in Air at 21 °C and at −40 °C, Wear, Vol 252, 2002, p 880–893CrossRefGoogle Scholar
  7. 7.
    P.H. Suegama, C.S. Fugivara, A.V. Benedetti, J. Fernández, J. Delgado, and J.M. Guilemany, Electrochemical Behaviour of Thermally Sprayed Cr3C2-NiCr Coatings in 0.5M H2SO4 Media, J. Appl. Electrochem., Vol 32, 2002, p 1287–1295CrossRefGoogle Scholar
  8. 8.
    J.M. Miguel, “Caracterización Estructural y de Propiedades Tribológicas y Mecánicas de Recubrimientos de Interés Tecnológico Obtenidos por Proyección Termica,” Ph.D. dissertation, Universidad de Barcelona, 2002Google Scholar
  9. 9.
    V. Sobolev, J.M. Guilemany, and J. Nutting, High Velocity Oxy-Fuel Spraying, Maney, 2004Google Scholar
  10. 10.
    T. Sahroui, N.E. Fenineche, G. Montavon, and C. Coddet, Wear Behaviour of HVOF Sprayed WC-12%Co Coatings vs. Hard Chrome Plating, Thermal Spray 2004: Advances in Technology and Application, ASM International, May 10–12, 2004 (Osaka, Japan), ASM International, 2004Google Scholar
  11. 11.
    V.A. de Souza and A. Neville, Corrosion and Erosion Damage Mechanism during Erosion-Corrosion of WC-Co-Cr Cermet Coatings, Wear, Vol 255, 2003, p 146–156CrossRefGoogle Scholar
  12. 12.
    S. Matthews, M. Hyland, and B. James, Microhardness Variation in Relation to Carbide Development in Heat Treated Cr3C2-NiCr Thermal Spray Coatings, Acta Mater., Vol 51, 2003, p 4267–4277CrossRefGoogle Scholar
  13. 13.
    J.M. Guilemany, J. Fernández, A.V. Benedetti, and J. Delgado, Drawbacks in Corrosion Resistance of Thermal Spray Coatings against Aqueous Aggressive Media, International Thermal Spray Conference, E. Lugscheider and C.C. Berndt, Ed., March 4–6, 2002 (Essen, Germany), DVS Deutscher Verband für Schweißen, 2002, p 894–899Google Scholar
  14. 14.
    L. Fedrizzi, S. Rossi, R. Cristel, and P.L. Bonora, Corrosion and Wear Behaviour of HVOF Cermet Coatings Used to Replace Hard Chromium, Electrochim. Acta, Vol 49, 2004, p 2803–2814CrossRefGoogle Scholar
  15. 15.
    D. Toma, W. Brandl, and G. Marginean, Wear and Corrosion Behaviour of Thermally Sprayed Cermet Coatings, Surf. Coat. Technol., Vol 138, 2001, p 149–158CrossRefGoogle Scholar
  16. 16.
    J.M. Guilemany, J.A. Calero, and V. Sobolev, “Effect of the Physical Characteristics and Properties of Powder Particles on the Structural and Mechanical Characterization of Cr3C2-NiC Coatings,” presented at the 1998 Powder Metallurgy World Congress, Granada, Spain, October, Vol 4, p. 6Google Scholar
  17. 17.
    ASTM Standard G65-91D: Standard Test Method for Wear Measuring Abrasion Using the Dry Sand/Rubber Wheel Apparatus.Google Scholar

Copyright information

© ASM International 2005

Authors and Affiliations

  • J. M. Guilemany
    • 1
  • N. Espallargas
    • 1
  • J. Fernández
    • 1
  • P. H. Suegama
    • 2
  • A. V. Benedetti
    • 2
  1. 1.Thermal Spray Centre, Materials Engineering, Departimento Ingeniería Química y MetalurgiaUniversidad de BarcelonaBarcelonaSpain
  2. 2.Departimento Físico-Química, Instituto de QuímicaUniversidade Estadual Paulista, UNESPAraraquara, SPBrasil

Personalised recommendations