Advertisement

Molybdenum silicide based materials and their properties

  • Z. Yao
  • J. Stiglich
  • T. S. Sudarshan
Article

Abstract

Molybdenum disilicide (MoSi2) is a promising candidate material for high temperature structural applications. It is a high melting point (2030 °C) material with excellent oxidation resistance and a moderate density (6.24 g/cm3). However, low toughness at low temperatures and high creep rates at elevated temperatures have hindered its commercialization in structural applications. Much effort has been invested in MoSi2 composites as alternatives to pure molybdenum disilicide for oxidizing and aggressive environments. Molybdenum disilicide-based heating elements have been used extensively in high-temperature furnaces. The low electrical resistance of silicides in combination with high thermal stability, electronmigration resistance, and excellent diffusion-barrier characteristics is important for microelectronic applications. Projected applications of MoSi2-based materials include turbine airfoils, combustion chamber components in oxidizing environments, missile nozzles, molten metal lances, industrial gas burners, diesel engine glow plugs, and materials for glass processing. In this paper, synthesis, fabrication, and properties of the monolithic and composite molybdenum silicides are reviewed.

Keywords

molybdenum disilicide MoSi2 oxidation resistance tribology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.O. Soechting, A Design Perspective on Thermal Barrier Coatings, Thermal Barrier Coating Workshop-Proceedings of a Conference at NASA Lewis Research Center (Cleveland, OH) 27–29 March 1995, NASA Conference Publication 3312, p 1–15Google Scholar
  2. 2.
    A.K. Vasudevan and J.J. Petrovic, A Comparative Overview of Molybdenum Disilicide Composites, Mat. Sci. Eng. A, Vol 155, 1992, p 1–17CrossRefGoogle Scholar
  3. 3.
    J.J. Petrovic, High Temperature Structural Silicides, Ceram. Eng. Sci. Proc., Vol 18, 1997, p 3–17Google Scholar
  4. 4.
    J.J. Petrovic and A.K. Vasudevan, Overview of High Temperature Structural Silicides, Mat. Res. Soc. Symp. Proc., Vol 322, 1994, p 3–8Google Scholar
  5. 5.
    J.J. Petrovic, MoSi2-Based High Temperature Structural Silicides, MRS Bulletin, XVIII, 1993, p 35–40Google Scholar
  6. 6.
    K.S. Kumar and C.T. Liu, Ordered Intermetallic Alloys, Part II: Silicides, Trialuminides, and Others, JOM, June 1993, p 28–34Google Scholar
  7. 7.
    O. Hoenigsschmid, Monatsh. Chem., Vol 28, 1907, p 1017CrossRefGoogle Scholar
  8. 8.
    Kanthal, Swedish Patent 155,836, 1953Google Scholar
  9. 9.
    E.A. Brandes and G.B. Brook, Smithells Metals Reference Book, 7th ed., 1992, p 11–376Google Scholar
  10. 10.
    W.J. Boettinger, J.H. Perepezko, and P.S. Frankwicz, Application of Ternary Diagrams to the Development of MoSi2-Based Materials, Mater. Sci. Eng. A, Vol 155, 1992, p 33–44CrossRefGoogle Scholar
  11. 11.
    B.K. Yen, T. Aizawa, and J. Kihara, Influence of Powder Composition and Milling Media on the Formation of Molybdenum Disilicide by a Mechanically Induced Self-Propagating Reaction, J. Am. Ceram. Soc., Vol 79, 1996, p 2221–2223CrossRefGoogle Scholar
  12. 12.
    R.B. Schwarz, S.R. Srinivasan, J.J. Petrovic, and C.J. Maggiore, Synthesis of Molybdenum Disilicide by Mechanical Alloying, Mat. Sci. Eng. A, Vol 155, 1992, p 75–84CrossRefGoogle Scholar
  13. 13.
    S. Zhang and Z.A. Munir, Synthesis of Molybdenum Disilicides by the Self-Propagating Combustion Method, J. Mater. Sci., Vol 26, 1991, p 3685–3688CrossRefGoogle Scholar
  14. 14.
    S.C. Deevi, Self-Propagating High-Temperature Synthesis of Molybdenum Disilicide, J. Mater. Sci., Vol 26, 1991, p 3343–3353CrossRefGoogle Scholar
  15. 15.
    S.N. Patankar, S.-Q. Xiao, J.J. Lewandowski, and A.H. Heuer, The Mechanism of Mechanical Alloying of MoSi2, J. Mater. Res., Vol 8, 1993, p 1311–1316ADSGoogle Scholar
  16. 16.
    P.-Y. Lee, T.-R. Chen, J.-L. Yang, and T.S. Chin, Synthesis of MoSi2 Powder by Mechanical Alloying, Mater. Sci. Eng. A, Vol 192/193, 1995, p 556–562CrossRefGoogle Scholar
  17. 17.
    L. Liu, F. Padella, W. Guo, and M. Magini, Solid State Reactions Induced by Mechanical Alloying in Metal-Silicon Systems, Acta Metall. Mater., Vol 43, 1995, p 3755–3761CrossRefGoogle Scholar
  18. 18.
    M.S. Haji-Mahmood and L.S. Chumbley, Processing and Characterization of Nanocrystalline Molybdenum Disilicide Consolidated by Hot Isostatic Pressing (HIP), Nanostructured Mater., Vol 7, 1996, p 95–112CrossRefGoogle Scholar
  19. 19.
    T.J. Trentler, R. Suryanarayanan, S.M.L. Sastry, and W.E. Buhro, Sonochemical Synthesis of Nanocrystalline Molybdenum Disilicide (MoSi 2), Mater. Sci. Eng. A, Vol 204, 1995, p 193–196CrossRefGoogle Scholar
  20. 20.
    E. Gaffet and N. Malhhouroux-Gaffet, Nanocrystalline MoSi2 Phase Formation Induced by Mechanically Activated Annealing, J. Alloy. Compd., Vol 205, 1994, p 27–34CrossRefGoogle Scholar
  21. 21.
    R. Radhakrishnan, S. Bhaduri, and C.H. Henager, Jr., The Reactive Processing of Silicides, JOM, Jan 1997, p 41–45Google Scholar
  22. 22.
    A.K. Bhattacharya, J. Am. Ceram. Soc., Vol 74, 1991, p 2707CrossRefGoogle Scholar
  23. 23.
    J. Trambukis and Z.A. Munir, J. Am. Ceram. Soc., Vol 73, 1990, p 1240CrossRefGoogle Scholar
  24. 24.
    S.B. Bhaduri, R. Radhakrishnan, and Z.B. Qian, Scr. Met. Mater., Vol 29, 1993, p 1089CrossRefGoogle Scholar
  25. 25.
    S.C. Deevi, Mater. Sci. Eng. A, Vol 149, 1992, p 241CrossRefGoogle Scholar
  26. 26.
    S.C. Deevi, J. Mater. Sci., Vol 26, 1991, p 3343CrossRefGoogle Scholar
  27. 27.
    S. Zhang and Z.A. Munir, J. Mater. Sci., Vol 26, 1991, p 3685CrossRefGoogle Scholar
  28. 28.
    I.J. Shon, Z.A. Munir, K. Yamazaki, and K. Shoda, Simultaneous Synthesis and Densification of MoSi2 by Field-Activated Combustion, J. Am. Ceram. Soc., Vol 79, 1996, p 1875–1880CrossRefGoogle Scholar
  29. 29.
    N.N. Thadhani, J. Appl. Phys., Vol 76, 1994, p 2129CrossRefADSGoogle Scholar
  30. 30.
    L.H. Yu and M.A. Meyers, J. Mater. Sci., Vol 26, 1991, p 601CrossRefGoogle Scholar
  31. 31.
    H.O. Pierson, Handbook of Chemical Vapor Deposition, Noyes Publications, NJ, 1992Google Scholar
  32. 32.
    W.B. Hillig and M. Usta, Formation Kinetics of MoSi2 and Mo5Si3 by the Reactive Diffusive Siliciding of Molybdenum, J. Am. Ceram. Soc., Vol 80, 1997, p 1723–1726CrossRefGoogle Scholar
  33. 33.
    A. Makris, Function of Cermet Elements in Heat Treating Furnaces, Ind. Heat., November 1994, p 46–50Google Scholar
  34. 34.
    R.K. Wade and J.J. Petrovic, Fracture Modes in MoSi2, J. Am. Ceram. Soc., Vol 75, 1992, p 1682–1684CrossRefGoogle Scholar
  35. 35.
    R.K. Wade and J.J. Petrovic, Processing Temperature Effects on Molybdenum Disilicide, J. Am. Ceram. Soc., Vol 75, 1992, p 3160–3162CrossRefGoogle Scholar
  36. 36.
    S.M.L. Sastry, R. Suryanarayanan, and K.L. Jerina, Consolidation and Mechanical Properties of MoSi2-Based Materials, Mater. Sci. Eng. A, Vol 192/193, 1995, p 881–890CrossRefGoogle Scholar
  37. 37.
    R. Suryanarayanan, S.M.L. Sastry, and K.L. Jerina, Strength and Toughness of Silicide Matrix Materials Consolidated by Hot Isostatic Pressing, Mat. Res. Soc. Symp. Proc., Vol 322, 1994, p 191–196Google Scholar
  38. 38.
    R. Suryanarayanan, S.M.L. Sastry, and K.L. Jerina, Consolidation of Molybdenum Disilicide Based Materials by Hot Isostatic Pressing (HIP): Comparison with Models, Acta Metall. Mater., Vol 42, 1994, p 3741–3750CrossRefGoogle Scholar
  39. 39.
    R. Suryanarayanan, S.M.L. Sastry, and K.L. Jerina, Mechanical Properties of Molybdenum Disilicide Based Materials Consolidated by Hot Isostatic Pressing (HIP), Acta Metall. Mater., Vol 42, 1994, p 3751–3755CrossRefGoogle Scholar
  40. 40.
    R. Suryanarayanan, S.M.L. Sastry, and K.L. Jerina, On the Values of Material Property Data Used in Hot Isostatic Pressing Models, Scri. Metall. Mater., Vol 28, 1993, p 797–802CrossRefGoogle Scholar
  41. 41.
    R. Tiwari, H. Herman and S. Sampath, Vacuum Plasma Spraying of MoSi2 and Its Composites, Mater. Sci. Eng. A, Vol 155, 1992, p 95–100CrossRefGoogle Scholar
  42. 42.
    R.G. Castro, R.W. Smith, A.D. Rollett, and P.W. Stanek, Ductile Phase Toughening of Molybdenum Disilicide by Low Pressure Plasma Spraying, Mater. Sci. Eng. A, Vol 155, 1992, p 101–108CrossRefGoogle Scholar
  43. 43.
    T.A. Lograsso, Synthesis of MoSi2 Single Crystals, Mater. Sci. Eng. A, Vol 155, 1992, p 115–120CrossRefGoogle Scholar
  44. 44.
    O. Thomas, J.P. Senateur, R. Madar, O. Laboide, and E. Rosencher, Solid State Commun., Vol 55, 1985, p 629CrossRefGoogle Scholar
  45. 45.
    Y. Umakoshi, T. Hirano, T. Sakagami, and T. Yamane, Scr. Metall., Vol 23, 1989 p 159CrossRefGoogle Scholar
  46. 46.
    K. Kimura, M. Nakamura, and T. Hirano, J. Mater. Sci., Vol 25, 1990, p 2487CrossRefGoogle Scholar
  47. 47.
    F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th ed., Wiley, 1988 p 278–279Google Scholar
  48. 48.
    S.A. Maloy, J.J. Lewandowski, A.H. Heuer, and J.J. Petrovic, Effects of Carbon Additions on the High Temperature Mechanical Properties of Molybdenum Disilicide, Mater. Sci. Eng. A, Vol 155, 1992, p 159–163CrossRefGoogle Scholar
  49. 49.
    U. Ramamurty, S. Suresh, and J.J. Petrovic, Effect of Carbon Addition on Elevated Temperature Crack Growth Resistance in (Mo, W)Si2-SiCP Composite, J. Am. Ceram. Soc., Vol 77, 1994, p 2681–2688CrossRefGoogle Scholar
  50. 50.
    N.S. Jacobson and K.N. Lee, Chemical Reactions in the Processing of MoSi2+Carbon Compacts, J. Am. Ceram. Soc., Vol 76, 1993, p 2005–2009CrossRefGoogle Scholar
  51. 51.
    J. Schlichting, Molybdenum Disilicide as a Component of Modern High Temperature Composites, High Temp.—High Press., Vol 10, 1978, p 241Google Scholar
  52. 52.
    E. Fitzer and W. Remmele, Possibilities and Limits of Metal Reinforced Refractory Silicides Especially Molybdenum Disilicide, Proc. Fifth Int. Conf. on Composite Materials, ICCM-V, W.C. Harrigan, Jr., J. Strife, and A.K. Dhingra, Ed., AIME, Warrendale, PA, 1985, p 515Google Scholar
  53. 53.
    F.D. Gac and J.J. Petrovic, J. Am. Ceram. Soc., Vol 68, 1985, p C200Google Scholar
  54. 54.
    D.H. Carter, W.S. Gibbs, and J.J. Petrovic, Mechanical Characterization of SiC Whisker-Reinforced MoSi2, Proc. Third Int. Symp. on Ceramic Materials and Components for Engines, American Ceramic Society, 1989, p 977Google Scholar
  55. 55.
    L. Xiao and R. Abbaschian, Interfacial Modification in Nb/MoSi2 Composites and Its Effects on Fracture Toughness, Mater. Sci. Eng. A, Vol 155, 1992, p 135–146CrossRefGoogle Scholar
  56. 56.
    L. Shaw and R. Abbaschian, Control of the Interfacial Reactions in Nb-Toughened MoSi2, J. Am. Ceram. Soc., Vol 76, 1993, p 2305–2311, 1993CrossRefGoogle Scholar
  57. 57.
    R. Gibala, A.K. Ghosh, D.C. Van Aken, D.J. Srolovita, A. Basu, H. Chang, D.P. Mason, and W. Yang, Mechanical Behavior and Interface Design of MoSi2-Based Alloys and Composites, Mater. Sci. Eng. A, Vol 155, 1992, p 147–158CrossRefGoogle Scholar
  58. 58.
    D.E. Alman, K.G. Shaw, N.S. Stoloff, and K. Rajan, Fabrication, Structure and Properties of MoSi2-Base Composites, Mater. Sci. Eng. A, Vol 155, 1992, p 85–94CrossRefGoogle Scholar
  59. 59.
    M.J. Maloney and R.J. Hecht, Development of Continuous-Fiber-Reinforced MoSi2-Base Composites, Mater. Sci. Eng. A, Vol 155, 1992, p 19–32CrossRefGoogle Scholar
  60. 60.
    S.K. Ramaseshan and K. Shobu, Reactive Infiltration of Aluminum into Molybdenum Disilicide Preform, J. Am. Ceram. Soc., Vol 81, 1998, p 730–732CrossRefGoogle Scholar
  61. 61.
    A. Costa e Silva and M.J. Kaufman, Microstructural Modification of MoSi2 through Aluminum Additions, Scr. Metall. Mater., Vol 29, 1993, p 1141–1145CrossRefGoogle Scholar
  62. 62.
    D.H. Carter, W.S. Gibbs, and J.J. Petrovic, Mechanical Characterization of SiC Whisker-Reinforced MoSi2, Proc. Third Int. Symp. on Ceramic Materials and Components for Engines, American Ceramic Society, 1989, p 977Google Scholar
  63. 63.
    J.I. Lee, N.L. Hecht, and T-I. Mah, In Situ Processing and Properties of SiC/MoSi2 Nano-Composites, J. Am. Ceram. Soc., Vol 81, 1998, p 421–424CrossRefGoogle Scholar
  64. 64.
    J-M. Ting, Sintering of Silicon Carbide/Molybdenum Disilicide Composites Using Boron Oxide as an Additive, J. Am. Ceram. Soc., Vol 77, 1994, p 2751–2752CrossRefGoogle Scholar
  65. 65.
    C.H. Henager, Jr., L.J. Brimhall, and J.P. Hirth, Synthesis of a MoSi 2-SiC Composite in situ Using a Solid State Displacement Reaction, 1992, p 109–114Google Scholar
  66. 66.
    D.E. Lawrynowicz, J. Wolfenstine, B. Hillig, and M. Usta, Reactive Synthesis and Characterization of MoSi2/SiC Using Low Pressure Plasma Deposition and 100% Methane, J. Am. Ceram. Soc., Vol 80, 1997, p 1723–1726Google Scholar
  67. 67.
    D.P. Butt, S.A. Maloy, H.H. Kung, D.A. Korzekwa, and J.J. Petrovic, Creep Behavior of MoSi2-SiC Composites, J. Mater. Res., Vol 11, 1996, p 1–9Google Scholar
  68. 68.
    D.P. Butt, D.A. Korzekwa, S.A. Maloy, H.H. Kung, and J.J. Petrovic, Impression Creep Behavior of SiC Particle-MoSi2 Composites, Mater. Res. Soc. Symp. Proc., Vol 322, 1994, p 197–202Google Scholar
  69. 69.
    A.K. Bhattacharya and J.J. Petrovic, Hardness and Fracture Toughness of SiC-Particle-Reinforced MoSi2 Composite, J. Am. Ceram. Soc., Vol 74, 1994, p 2700–2703CrossRefGoogle Scholar
  70. 70.
    J.J. Petrovic, A.K. Bhattacharya, R.E. Honnell, T.E. Mitchell, R.K. Wade, and K.J. McClellan, ZrO2 and ZrO2-SiC Particle Reinforced MoSi2 Matrix Composites, Mater. Sci. Eng. A, Vol 155, 1992, p 259–266CrossRefGoogle Scholar
  71. 71.
    J.J. Petrovic, Mechanical Behavior of MoSi2 and MoSi2 Composites, Mater. Sci. Eng. A, Vol 192/193, 1995, p 31–37CrossRefGoogle Scholar
  72. 72.
    D.E. Lawrynowicz, J. Wolfenstine, E.J. Lavernia, S.R. Nutt, D.E. Bailey, A. Sickinger, and A.M. Hirt, Reactive Synthesis and Characterization of MoSi2/SiC Using Low-Pressure Plasma Deposition and 100% Methane, Scr. Metall. Mater., Vol 32, 1995, p 689–693CrossRefGoogle Scholar
  73. 73.
    J.M. Brupbacher, L. Christodoulou, and D.C. Nagle, U.S. Patent 4,710,348, 1987Google Scholar
  74. 74.
    L. Christodoulou, D.C. Nagle, and J.M. Brupbacher, U.S. Patent 4,774,052, 1988Google Scholar
  75. 75.
    D.C. Nagle, J.M. Brupbacher, and L. Christodoulou, U.S. Patent 4,916,029, 1990Google Scholar
  76. 76.
    R.M. Aikin, Jr., Strengthening of Discontinuously Reinforced MoSi2 Composites at High Temperatures, Mater. Sci. Eng. A, Vol 155, 1992, p 121–134CrossRefGoogle Scholar
  77. 77.
    C.H. Henager and J.L. Brimhall, Synthesis of a MoSi2/SiC Composites In Situ Using a Solid State Displacement Reaction between Mo2C and Si, Scr. Metall. Mater., Vol 26, 1992, p 585–589CrossRefGoogle Scholar
  78. 78.
    C.C. Yu, V. Jagasivamani, R. Kumar, and T.S. Sudarshan, Novel Synthesis of MoSi2 and MoSi2-Al2O3 Ultrafine Powders, Mater. Sci. Technol., Vol 13, 1997, p 887–892Google Scholar
  79. 79.
    J.J. Petrovic, M.I. Pena, I.E. Reimanis, M.S. Sandlin, S.D. Conzone, H.H. Kung, and D.P. Butt, Mechanical Behavior of MoSi2 Reinforced-Si3N4 Matrix Composites, J. Am. Ceram. Soc., Vol 80, 1997, p 3070–3076CrossRefGoogle Scholar
  80. 80.
    J.J. Petrovic, M.I. Pena, and H.H. Kung, Fabrication and Microstructures of MoSi2 Reinforced-Si3N4 Matrix Composites, J. Am. Ceram. Soc., Vol 80, 1997, p 1111–1116CrossRefGoogle Scholar
  81. 81.
    H. Klemm, K. Tangermann, C. Schubert, and W. Hermel, Influence of Molybdenum Silicide Additions on High-Temperature Oxidation Resistance of Silicon Nitride Materials, J. Am. Ceram. Soc., Vol 79, 1996, p 2429–2435CrossRefGoogle Scholar
  82. 82.
    J.A. Hawk, D.E. Alman, and J.J. Petrovic, Abrasive Wear Behavior of a Si3N4-MoSi2 Composite, J. Am. Ceram. Soc., Vol 79, 1996, p 1297–1302CrossRefGoogle Scholar
  83. 83.
    K. Arata, N. Takeuchi, M. Yoshinaka, K. Hirota, and O. Yamaguchi, Fabrication and Mechanical Properties of Continuously Graded MoSi2-ZrO2(2Y) Materials Using Wet-Molding, J. Am. Ceram. Soc., Vol 80, 1997, p 2168–2170CrossRefGoogle Scholar
  84. 84.
    R. Gibala, A.K. Ghosh, D.C. Van Aiken, D.J. Srolovitz, A. Basu, H. Chang, D.P. Mason, and W. Yang, Mechanical Behavior and Interface Design of MoSi2-Based Alloys and Composites, Mater. Sci. Eng. A, Vol 155, 1992, p 147–158CrossRefGoogle Scholar
  85. 85.
    C.M. Huang, C.Y. Yuh, M. Farooque, D. Zhu, Y. Xu, and W.M. Kriven, Properties and Microstructure of Molybdenum Disilicide-β′-SiAlOn Particle Ceramic Composites, J. Am. Ceram. Soc., Vol 80, 1997, p 2837–2843CrossRefGoogle Scholar
  86. 86.
    L.O. Nordberg and T. Ekstrom, Hot-Pressed MoSi2-Particulate-Reinforced α-SiAlON Composites, J. Am. Ceram. Soc., Vol 78, 1995, p 797–800CrossRefGoogle Scholar
  87. 87.
    T.C. Chou and T.G. Nieh, Pesting of the High-Temperature Intermetallic MoSi2, JOM, December 1993, p 15–22Google Scholar
  88. 88.
    T.C. Chou and T.G. Nieh, J. Mater. Res., Vol 8, 1993, p 214ADSGoogle Scholar
  89. 89.
    T.C. Chou and T.G. Nieh, Mater. Res. Proceed., Vol 288, 1993, p 965Google Scholar
  90. 90.
    T.C. Chou and T.G. Nieh, Scr. Metall. Mater., Vol 26, 1992, p 1637CrossRefGoogle Scholar
  91. 91.
    T.C. Chou and T.G. Nieh, Scr. Metall. Mater., Vol 27, 1992, p 19CrossRefGoogle Scholar
  92. 92.
    P.J. Meschter, Metall. Trans. A, Vol 23, 1992, p 1763Google Scholar
  93. 93.
    D.A. Berztiss, R.R. Cerchiara, E.A. Gulbransen, F.S. Pettit, and G.H. Meier, Oxidation of MoSi 2 and Comparison with Other Silicide Materials, 1992, p 165–182Google Scholar
  94. 94.
    J. Cook, A. Khan, E. Lee, and R. Mahapatra, Oxidation of MoSi 2-Based Composites, 1992, p 183–198Google Scholar
  95. 95.
    A. Mueller, G. Wang, R.A. Rapp, E.L. Courtright, and T.A. Kircher, Oxidation Behavior of Tungsten and Germanium-Alloyed Molybdenum Disilicide Coatings, 1992, p 199–208Google Scholar
  96. 96.
    M.K. Meyer and M. Akinc, Isothermal Oxidation Behavior of Mo-Si-B Intermetallics at 1450 °C, J. Am. Ceram. Soc., Vol 79, 1996, p 2763–2766CrossRefGoogle Scholar
  97. 97.
    P.H. Boldt, J.D. Embury, and G.C. Weatherly, Room Temperature Microindentation of Single Crystal MoSi 2, 1992, p 251–258Google Scholar
  98. 98.
    K. Ito, H. Inui, Y. Shirai, and M. Yamaguchi, Plastic Deformation of MoSi2 Single Crystals, Philos. Mag. A, Vol 72, 1995, p 1075–1097Google Scholar
  99. 99.
    L. Xiao, Y.S. Kim, and R. Abbaschian, Mater. Sci. Eng. A, Vol 144, 1991, p 277–285CrossRefGoogle Scholar
  100. 100.
    H.E. Deve, C.H. Weber, and M. Maloney, Mater. Sci. Eng. A, Vol 153, 1992, p 668–675CrossRefGoogle Scholar
  101. 101.
    S. Maloy, A.H. Heuer, J.J. Lewandowski, and J.J. Petrovic, J. Am. Ceram. Soc., Vol 74, 1991, p 2704CrossRefGoogle Scholar
  102. 102.
    K.K. Richardson and D.W. Freitag, Ceram. Eng. Sci. Proc., Vol 12, 1991, p 1679Google Scholar
  103. 103.
    J.J. Petrovic, R.E. Honnell, T.E. Mitchell, T.E. Wade, and K.J. McClellan, Ceram. Eng. Sci. Proc., Vol 12, 1991, p 1633CrossRefGoogle Scholar
  104. 104.
    K. Sadananda, H. Jones, J. Feng, J.J. Petrovic, and A.K. Vasudevan, Ceram. Eng. Sci. Proc., Vol 12, 1991, p 1671Google Scholar
  105. 105.
    S. Bose, Engineering Aspect of Creep Deformation of Molybdenum Disilicide, Mater. Sci. Eng. A, Vol 155, 1992, p 217–226CrossRefGoogle Scholar
  106. 106.
    S.M. Wiederhorn, R.J. Gettings, D.E. Roberts, C. Ostertag, and J.J. Petrovic, Tensile Creep of Silicide Composites, Mater. Sci. Eng. A, Vol 155, 1992, p 1–17, 209–216CrossRefGoogle Scholar
  107. 107.
    K. Sadananda, C.R. Feng, H. Jones, and J.J. Petrovic, Creep of Molybdenum Disilicide Composites, Mater. Sci. Eng. A, Vol 155, 1992, p 227–240CrossRefGoogle Scholar
  108. 108.
    W.-Y. Lin, J-Y. Hsu, and R.F. Speyer, Stability of Molybdenum Disilicide in Combustion Gas Environments, J. Am. Ceram. Soc., Vol 77, 1994, p 1162–1168CrossRefGoogle Scholar
  109. 109.
    R.G. Castro, J.R. Hellmann, A.E. Segall, and D.L. Shellman, Fabrication and Testing of Plasma-Spray Formed MoSi2 and MoSi2 Composite Tubes, Mater. Res. Soc. Symp. Proc., Vol 322, 1994, p 81–86Google Scholar
  110. 110.
    A.H. Bartlett, R.G. Castro, D.P. Butt, H. Kung, and J.J. Petrovic, Plasma Sprayed MoSi2/Al2O3 Laminate Composite Tubes as Lances in Pyrometallurgical Operations, Ind. Heat., Jan 1996Google Scholar
  111. 111.
    S.K. Sundaram and R.F. Speyer, Electrochemical Corrosion and Protection of Molybdenum and Molybdenum Disilicide in a Molten Soda-Lime Silicate Glass Environment, J. Am. Ceram. Soc., Vol 79, 1996, p 1851–1856CrossRefGoogle Scholar
  112. 112.
    S.K. Sundaram, J-Y. Hsu, and R.F. Speyer, Molten Glass Corrosion Resistance of Immersed Combustion-Heating Tube Materials in E-Glass, J. Am. Ceram. Soc., Vol 78, 1995, p 1940–1996CrossRefGoogle Scholar
  113. 113.
    S.K. Sundaram, J-Y. Hsu, and R.F. Speyer, Molten Glass Corrosion Resistance of Immersed Combustion-Heating Tube Materials in Soda-Lime-Silicate Glass, J. Am. Ceram. Soc., Vol 77, 1994, p 1613–1623CrossRefGoogle Scholar
  114. 114.
    M.K. Meyer and M. Akinc, Oxidation Behavior of Boron-Modified Mo5Si3 at 800–1300 °C, J. Am. Ceram. Soc., Vol 79, 1996, p 938–944CrossRefGoogle Scholar

Copyright information

© ASM International 1999

Authors and Affiliations

  • Z. Yao
    • 1
  • J. Stiglich
    • 1
  • T. S. Sudarshan
    • 1
  1. 1.Materials Modification Inc., P-1FairfaxUSA

Personalised recommendations