Journal of Materials Engineering and Performance

, Volume 8, Issue 6, pp 669–676 | Cite as

Fractal characterization of wear-erosion surfaces

  • J. Rawers
  • J. Tylczak


Wear erosion is a complex phenomenon resulting in highly distorted and deformed surface morphologies. Most wear surface features have been described only qualitatively. In this study wear surfaces features were quantified using fractal analysis. The ability to assign numerical values to wear-erosion surfaces makes possible mathematical expressions that will enable wear mechanisms to be predicted and understood. Surface characterization came from wear-erosion experiments that included varying the erosive materials, the impact velocity, and the impact angle. Seven fractal analytical techniques were applied to micrograph images of wear-erosion surfaces. Fourier analysis was the most promising. Fractal values obtained were consistent with visual observations and provided a unique wear-erosion parameter unrelated to wear rate.


alumina analysis erosion fractal silicon carbide tribology wear 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. Hutchings, Tribology: Friction and Wear of Engineering Materials, CRC Press, 1992Google Scholar
  2. 2.
    K. Ludema, Friction, Wear, Lubrication, CRC Press, 1996Google Scholar
  3. 3.
    A. Sarkar, Wear of Metals, Pergamon Press Inc., 1976Google Scholar
  4. 4.
    E. Rabinowicz, Friction and Wear of Materials, John Wiley & Sons, Inc., 1995Google Scholar
  5. 5.
    A. Levy, Solid Particle Erosion and Erosion-Corrosion of Materials, ASM InternationalGoogle Scholar
  6. 6.
    J. Russ, Fractal Surfaces, Plenum Press, 1994Google Scholar
  7. 7.
    S. Srinivasan, J. Russ, and R. Scottergood, J. Mater. Res., Vol 5 (No. 11), 1990, p 2616–2619Google Scholar
  8. 8.
    Z. Chen, J. Mecholsky, T. Joseph, and C. Beatty, J. Mater. Sci., Vol 32 (No. 23), 1997, p 6317–6323CrossRefGoogle Scholar
  9. 9.
    P. Stupak, J. Kang, and J. Donovan, Wear, Vol 141 (No. 1), 1990, p 73–84CrossRefGoogle Scholar
  10. 10.
    J. Hsiung and T. Chow, J. Mater. Sci., Vol 33 (No. 11), 1998, p 2949–2953CrossRefGoogle Scholar
  11. 11.
    L. Richards and B. Dempsey, Scr. Metall., Vol 22, 1988, p 687–689CrossRefGoogle Scholar
  12. 12.
    L. Meisel, J. Phys. D, Vol 24 (No. 6), 1991, p 942–952CrossRefGoogle Scholar
  13. 13.
    A. Majumdar and C. Tien, J. Heat Transfer, Vol 113, 1991, p 516–525CrossRefGoogle Scholar
  14. 14.
    G. Zhou, M. Leu, and D. Blackmore, Wear, Vol 170, 1993, p 1–14CrossRefGoogle Scholar
  15. 15.
    A. Majumdar and C. Tien, Wear, Vol 136 (No. 2), 1990, p 313–327CrossRefGoogle Scholar
  16. 16.
    M. Zhang, L. Song, and H. Zeng, Adv. Comp. Lett., Vol 5 (No. 5), 1996, p 137–141Google Scholar
  17. 17.
    M. Zhang, L. Song, H. Zung, and F. Freeidick, J. Mater. Sci. Lett., Vol 15 (No. 15), 1996, p 1288–1290Google Scholar
  18. 18.
    D. Alman, J. Tylczak, J. Hawk, and M. Hebsur, Mater. Sci. Eng. A., Vol 261, 1998, p 245–251Google Scholar
  19. 19.
    B. Mandelbrout, Fractal Geometry of Nature, W. Freeman & Co., New York, 1983Google Scholar
  20. 20.
    L. Pietronero and E. Tosatti, Fractals in Physics, North-Holland Co., New York, 1985Google Scholar
  21. 21.
    B. Kayes, Random Walk through Fractal Dimensions, VCH Publishing Inc., New York, 1989Google Scholar
  22. 22.
    G. Baker and J. Gollup, Chaotic Dynamics, Cambridge University Press, Cambridge, UK, 1990Google Scholar
  23. 23.
    M. Schwedon, Fractal, Chaos, and Power Laws, W.H. Freeman & Co., New York, 1990Google Scholar
  24. 24.
    M. Barnsely and S. Demko, Chaotic Dynamics and Fractals, Academic Press, New York, 1986Google Scholar
  25. 25.
    D. Ruelle, Chaotic Evolution and Strange Attrictors, Cambridge University Press, Cambridge, UK, 1990Google Scholar

Copyright information

© ASM International 1999

Authors and Affiliations

  • J. Rawers
    • 1
  • J. Tylczak
    • 1
  1. 1.U.S. Department of EnergyAlbany Research CenterAlbany

Personalised recommendations