Journal of Materials Engineering and Performance

, Volume 14, Issue 6, pp 717–721 | Cite as

Predictions of titanium alloy properties using thermodynamic modeling tools

  • F. Zhang
  • F. -Y. Xie
  • S. -L. Chen
  • Y. A. Chang
  • D. Furrer
  • V. Venkatesh


Thermodynamic modeling tools have become essential in understanding the effect of alloy chemistry on the final microstructure of a material. Implementation of such tools to improve titanium processing via parameter optimization has resulted in significant cost savings through the elimination of shop/laboratory trials and tests. In this study, a thermodynamic modeling tool developed at CompuTherm, LLC, is being used to predict β transus, phase proportions, phase chemistries, partitioning coefficients, and phase boundaries of multicomponent titanium alloys. This modeling tool includesPandat, software for multicomponent phase equilibrium calculations, andPanTitanium, a thermodynamic database for titanium alloys. Model predictions are compared with experimental results for one α-β alloy (Ti-64) and two near-β alloys (Ti-17 and Ti-10-2-3). The alloying elements, especially the interstitial elements O, N, H, and C, have been shown to have a significant effect on the β transus temperature, and are discussed in more detail herein.


property prediction thermodynamic modeling tools titanium alloys 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.J. van Laar, Melting-Point and Freezing-Point Curves in Binary Systems, When the Solid Phase Is a Mixture of Both Components,Z. Phys. Chem., Vol 63, 1908, p 216Google Scholar
  2. 2.
    L. Kaufman,Computer Calculation of Phase Diagrams, Academic Press, 1970Google Scholar
  3. 3.
    I. Ansara, Comparison of Methods for Thermodynamic Calculation of Phase Diagrams,Int. Metals Rev., Vol 24 (No. 1), 1979, p 20–53Google Scholar
  4. 4.
    Y.-M. Muggianu, M. Gambino, and J.P. Bros, Enthalpies of Formation of Liquid Alloys Bismuth-Gallium-Tin at 723 K, Choice of an Analytical Representation of Integral and Partial Excess Functions of Mixing,J. Chim. Phys., Vol 72 (No. 1), 1975, p 83–88Google Scholar
  5. 5.
    B. Sundman and J. Agren, A Regular Solution Model for Phases with Several Components and Sublattices, Suitable for Computer Applications,J. Phys. Chem. Solids, Vol 42, 1981, p 297–301CrossRefGoogle Scholar
  6. 6.
    W.A. Oates and H. Wenzl, The Bond Energy Model for Ordering in a Phase with Sites of Different Coordination Numbers,CALPHAD, Vol 16 (No. 1), 1992, p 73–78CrossRefGoogle Scholar
  7. 7.
    S.-L. Chen, C.R. Kao, and Y.A. Chang, Generalized Quasi-Chemical Model for Intermetallic Compounds with Anti-Structure Defects,Intermetallics, Vol 3 (No. 3), 1995, p 233CrossRefGoogle Scholar
  8. 8.
    U.R. Kattner, The Thermodynamic Modeling of Multicomponent Phase Equilibria,JOM (TMS), Vol 49 (No. 12), 1997, p 14–19CrossRefGoogle Scholar
  9. 9.
    H. Liang and Y.A. Chang, A Thermodynamic Database on Aluminum Alloys for Practical Alloy Design,Light Metals, 1999, p 875–881Google Scholar
  10. 10.
    F.-Y. Xie,PanTitanium User Manual, Version 1, CompuTherm, LLC, Madison, WI, 2004Google Scholar
  11. 11.
    S.-L. Chen, F. Zhang, S. Daniel, F.-Y. Xie, X.-Y. Yan, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates, Calculating Phase Diagrams UsingPANDAT andPanEngine, JOM (TMS), Vol 55 (No. 12), 2003, p 48–51CrossRefGoogle Scholar
  12. 12.
    V. Venkatesh, private communication, TIMET R&D, Henderson, NV, 2004Google Scholar
  13. 13.
    D. Furrer, private communication, Ladish Co., Inc., Cudahy, WI, 2004Google Scholar
  14. 14.
    T.W. Duerig, G.T. Terlinde, and J.C. Williams, Phase Transformations and Tensile Properties of Ti-10V-2Fe-3Al,Metall. Trans, Vol 11A (No. 12), 1980, p 1987–1998Google Scholar

Copyright information

© ASM International 2005

Authors and Affiliations

  • F. Zhang
    • 1
  • F. -Y. Xie
    • 1
  • S. -L. Chen
    • 1
  • Y. A. Chang
    • 2
  • D. Furrer
    • 3
  • V. Venkatesh
    • 4
  1. 1.CompuTherm, LLCMadison
  2. 2.Department of Materials Science & EngineeringUniversity of Wisconsin-MadisonMadison
  3. 3.Ladish Co., Inc.Cudahy
  4. 4.TIMET R&DHenderson

Personalised recommendations