Crack growth in microalloyed pipeline steels for sour gas transport

  • S. Serna
  • B. Campillo
  • J. L. Albarrán
Testing And Evaluation


Different cracking modes in a sour gas environment were observed. These modes were mainly related to the microstructure obtained during the manufacturing process of two API X52 microalloyed steels. A banded ferrite/pearlite microstructure was found to be susceptible to hydrogen effects, whereas an acicular ferrite with a grain boundary bainite/bainite microstructure was found to be more susceptible to dissolution in crack-tip regions.


dissolution fracture hydrogen embrittlement microalloyed steel microstructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Kobayashi, Recent High Performance Line Pipe for Oil/Gas Production, Proc. VIII Seminar Mexico-Japan ’94, K. Kawakami, Ed., JICA, Mexico City, 1994, p 9–1 to 9-12Google Scholar
  2. 2.
    H. Asahi, M. Ueneo, and T. Yonezawa, Prediction of Sulfide Stress Cracking in High Strength Tubulars, Corrosion, Vol 50 (No. 7), 1994, p 537–545Google Scholar
  3. 3.
    G.M. Pressouyre, R.T. Blondeau, G. Primon, and L. Cadiou, Very Low Inclusion and Impurity Content Steels as a Solution to Resist Sour Environments, Proc. First Int. Conf. Current Solutions to Hydrogen Problems in Steels, C.G. Interrater and G.M. Pressouyre, Ed., ASM International, 1982, p 212–221Google Scholar
  4. 4.
    H.K. Birnbaum, Mechanisms of Hydrogen-Related Fracture of Metals, Environment-Induced Cracking of Metals, R.P. Gangloff and M.B. Ives, Ed., National Association of Corrosion Engineers (NACE) International, 1990, p 21–29Google Scholar
  5. 5.
    B. Craig, Limitations of Alloying to Improve the Threshold for Hydrogen Stress Cracking of Steel, Hydrogen Effects on Material Behavior, N.R. Moody and A.W. Thompson, Ed., TMS-AIME, 1990, p 955–963Google Scholar
  6. 6.
    “Sulfide Stress Cracking Resistant Metallic Materials for Oilfield Equipment,” Standard MR0175-99, NACE International, 1999Google Scholar
  7. 7.
    S.R. Novak and S.T. Rolfe, Modified WOL Specimen for KIscc Environmental Testing, J. of Materials, Vol 4 (No. 3), 1969, p 701–728Google Scholar
  8. 8.
    W.F. Deans and C.E. Richards, A Simple and Sensitive Method of Monitoring Crack and Load in Compact Fracture Mechanics Specimens Using Strain Gages, J. Test. Eval., Vol 7, 1979, p 147–154CrossRefGoogle Scholar
  9. 9.
    “Laboratory Testing of Metals for Resistance to Specific Forms of Environmental Cracking in H2S Environments,” Standard TM-0177-99, NACE International, 1999Google Scholar
  10. 10.
    J.Q. Wang, A. Atrens, D.R. Cousens, and N. Kinaev, Microstructure of X52 and X65 Pipeline Steels, J. Mater. Sci., Vol 34, 1999, p 1721–1728CrossRefGoogle Scholar
  11. 11.
    F.P. Ford, Environmental Induced Cracking: The Interaction Between Mechanism and Design, Corrosion/86: Symposium on Environmental Cracking-The Interactions Between Mechanisms and Design, NACE International, 1986, p 113Google Scholar
  12. 12.
    J.L. Albarrán, L. Martínez, and H.F. López, The Sour Gas Susceptibility of an X-80 Steel for Oil and Gas Transport, Scr. Mater., Vol 38 (No. 5), 1998, p 751–752CrossRefGoogle Scholar
  13. 13.
    D.A. Vermilyea, A Film Rupture Model for Stress Corrosion Cracking, Stress-Corrosion Cracking and Hydrogen Embrittlement of Iron-Base Alloys, R.W. Staehle, J. Hochmann, R.D. McCright, and J.E. Slater, Ed., National Association of Corrosion Engineers, 1977, p 208–217Google Scholar
  14. 14.
    R.W. Staehle, Predictions and Experimental Verifications of the Slip Dissolution Model for Stress Corrosion Cracking of Low Strength Alloys, Stress-Corrosion Cracking and Hydrogen Embrittlement of Iron-Base Alloys, R.W. Staehle, J. Hochmann, R.D. McCright, and J.E. Slater, Ed., National Association of Corrosion Engineers, 1977, p 180–207Google Scholar
  15. 15.
    E. Anelli, L. Cariboni, and A. Mascanzoni, Analysis of Metallurgical Factors Controlling the SSCC Resistance of Quenched and Tempered Microalloyed Steels, Processing, Microstructure and Properties of HSLA Steels, A.J. DeArdo, Ed., TMS, 1988, p 477–495Google Scholar
  16. 16.
    T. Boellinghaus and H. Hoffmeister, Numerical Model for Hydrogen-Assisted Cracking, Corrosion, Vol 56 (No. 6), 2000, p 611–614CrossRefGoogle Scholar
  17. 17.
    R.A. Carneiro, R.C. Ratnapuli, and V. de Freitas Cunha Lins, The Influence of Chemical Composition and Microstructure of API Linepipe Steels on Hydrogen Induced Cracking and Sulfide Stress Corrosion Cracking, Mater. Sci. Eng., A, Vol 357, 2003, p 104–110CrossRefGoogle Scholar

Copyright information

© ASM International 2005

Authors and Affiliations

  • S. Serna
    • 1
  • B. Campillo
    • 2
  • J. L. Albarrán
    • 2
  1. 1.CIICAP-UAEMCuernavaca, MorMexico
  2. 2.Centro de Ciencias Físicas, and Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico

Personalised recommendations