The influence of microstructure on the tensile and fatigue behavior of SAE 6150 steel

  • T. Alp
  • A. Wazzan


The tensile and reverse-bending fatigue behaviors of the SAE 6150 steel in the dual-phase (DP), fully martensitic, and tempered states, respectively, have been investigated using mechanical tests, scanning electron microscopy (SEM), energy-dispersive x-ray (EDX) microscopy, and optical microscopy. Residual stresses, inherent microcracks, and retained austenite films in the martensitic steel, quenched from 900 °C, lead to the development of inferior tensile and fatigue strength. Tempering at 700°C relieves the residual stresses associated with martensite, causes the precipitation of microalloy carbides (MACs), and thus results in superior strength, increased fatigue resistance, and moderate ductility. The DP microstructure, consisting of martensite islets in a ferrite matrix, gives rise to a combination of good strength, excellent ductility, and commendable fatigue characteristics. MAC in the tempered steel and martensite islands in the DP variant enhance fatigue performance by causing crack tip deflection and concomitant crack path tortuosity. Strain incompatibility between martensite and ferrite in the DP steel, and cementite films and ferrite in the tempered variant are identified as fatigue crack initiation sites.


dual-phase steels fatigue behavior SAE 6150 steel tensile behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Hayami and F. Frukawa: “Dual Phase and Trip Steels” in Proceedings of Microalloying ’75, Union Carbide, New York, NY, 1975, pp. 311–21.Google Scholar
  2. 2.
    M.S. Rashid: SAE Trans., 85, 1976, p. 938.Google Scholar
  3. 3.
    M.S. Rashid, SAE Trans., 86, 1977, p. 935.Google Scholar
  4. 4.
    J.H. Bucher and E.G. Hamburg: SAE Trans., 86, 1997, p. 730.Google Scholar
  5. 5.
    A.P. Coldren and G. Tither: J. Metals., 30, 1978, p. 6.Google Scholar
  6. 6.
    G.R. Speich, V.A. Dermarest, and R.L. Miller: Metall. Trans., 12A, 1981, p. 1419.Google Scholar
  7. 7.
    J.M. Rigsbee and P.J. Vander: in Formable and Dual Phase Steels, A.T. Davenport, ed., TMS-AIME, New York, NY, 1979, p. 56.Google Scholar
  8. 8.
    G.R. Eldis: in Structure and Properties of Dual Phase Steels, R.A. Kot and J.W. Morris, ed., AIME, New York, NY, 1979, p. 202.Google Scholar
  9. 9.
    T. Furukawa, H. Morikawa, H. Takechi, and K. Koyama: in Structure and Properties of Dual Phase Steels, R.A. Kot and J.W. Morris, ed., AIME, New York, NY, 1979, p. 281.Google Scholar
  10. 10.
    R. Priestner and M. Ajmal: Mater. Sci. Technol., 3, 1987, p. 360.Google Scholar
  11. 11.
    Z. Nishiyama: Martensitic Transformation, Academic Press, New York, NY, 1978.Google Scholar
  12. 12.
    M.S. Rashid and B.V.N. Rao: in Fundamentals of Dual-Phase Steels, R.A. Kot and B.L. Brambit, ed., TMS-AIME, Warrendale, PA, 1981, p. 249.Google Scholar
  13. 13.
    X.P. Shen and R. Priestner: Metall. Trans., 21A, 1990, p. 2547.Google Scholar
  14. 14.
    G.M. Hughes: “The Influence of Prior Microstructure on the Constitution of Dual-Phase Steel,” M.Sc. Thesis, The University of Manchester, 1986.Google Scholar
  15. 15.
    R. Priestner: in Proceedings of Phase Transformations ’87, G.M. Lorimer, ed., Institute of Metals, London, UK, 1988, p. 411.Google Scholar
  16. 16.
    S.S. Hansen and B.L. Bramfitt: in Proceedings of International Conference on Steel Rolling: Science and Technology of Flat Rolled Products, Iron and Steel Institute of Japan, Tokyo, Japan, 1980, p. 1297.Google Scholar
  17. 17.
    T. Kato, K. Hashiguchi, I. Takahashi, T. Irie, and N. Ohashi: in Fundamentals of Dual-Phase Steels, R.A. Kot and B.L. Branfitt, ed., TMS-AIME, Warrendale, PA, 1981, p. 199.Google Scholar
  18. 18.
    H. Suzuki and A.J. McEvily: Metall. Trans., 10A, 1979, p. 475.Google Scholar
  19. 19.
    K. Minakawa, Y. Matsuo, and A.J. McEvily: Metall. Trans., 13A, 1982, p. 439.Google Scholar
  20. 20.
    V.B. Dutta, S. Suresh, and R.O. Ritchie: Metall. Trans., 15A, 1984, p. 1193.Google Scholar
  21. 21.
    Jian Ku Shang, J.L. Tzou, and R.O. Ritchie: Metall. Trans., 18A, 1987, p. 1613.Google Scholar
  22. 22.
    R.M. Ramage, K.V. Jata, G.J. Shiflet, and E.A. Starke, Jr.: Metall. Trans., 18A, 1987, p. 1291.Google Scholar
  23. 23.
    D.L. Chen, Z.G. Wang, X.X. Jiang, S.H. Ai, and C.H. Shih: Mater. Sci. Eng., 108A, 1989, p. 141.Google Scholar
  24. 24.
    Y.S. Zheng, Z.G. Wang, and S.H. Ai: in Proceedings of C-MRS International ’90, June 18–22, Beijing, People’s Republic of China, Vol. 5, 1990, p. 257.Google Scholar
  25. 25.
    G. Thomas, J.K. Kim D. Manojlovic, and R. Milovic: in Proceedings of International Symposium on Processing, Microstructure and Properties of HSLA Steels, A.J. DeArdo, Jr., ed., TMS, Warrendale, PA, 1988, p. 399.Google Scholar
  26. 26.
    R.W.K. Honeycombe: Steels, Microstructure and Properties, Edward Arnold, (Publishers) Ltd., London, UK, 1981.Google Scholar
  27. 27.
    K. Narita: Trans. Iron Steel Inst. Japan, 15, 1975, p. 147.Google Scholar
  28. 28.
    H. Tofaute and E. Buttinghouse: Archiv. Eisenhuttenwesen, 12, 1938, p. 33 (in German).Google Scholar
  29. 29.
    D.P. Koistinen and R.E. Marburger: Acta Met., 7, 1959, p. 59.CrossRefGoogle Scholar
  30. 30.
    A.J. DeArdo, G.A. Rwtz, and P.J. Wray, ed.: Thermomechanical Processing of Microalloyed Austenite, TMS-AIME, Warrendale, PA, 1982.Google Scholar
  31. 31.
    G. Krauss: Principles of Heat Treatment of Steel, ASM, Metals Park, OH, 1982.Google Scholar
  32. 32.
    G.R. Speich: Metall. Trans., 3A, 1972, p. 1045.Google Scholar
  33. 33.
    G. Thomas: Metall. Trans., 9A, 1978, p. 439.Google Scholar
  34. 34.
    A.R. Marder and A.O. Benscoter: Trans. ASM, 61, 1968, p. 239.Google Scholar
  35. 35.
    J.M. Meyer and G.S. Ansell: Metall. Trans., 6A, 1975, p. 178.Google Scholar
  36. 36.
    D.S. Dabkowski and G.R. Speich: in Proceedings of Mechanical Working and Steel Processing Conference XV, AIME, New York, NY, 1977, p. 284.Google Scholar
  37. 37.
    M. Hillert: Jerkontorets Annaler, 141, 1957, p. 67 (in Swedish).Google Scholar
  38. 38.
    Anon.: Metals Handbook, Vol 1, 9th ed., ASM, Metals Park, OH, 1978, p. 677.Google Scholar
  39. 39.
    M. Cohen: Trans. AIME, 224, 1962, p. 638.Google Scholar
  40. 40.
    Anon.: Metals Handbook, Vol 1, 9th ed., ASM, Metals Park, OH, 1978, p. 676.Google Scholar
  41. 41.
    Howard E. Boyer, ed.: Atlas of Fatigue Curves, ASM, Metals Park, OH, 1986, p. 122.Google Scholar

Copyright information

© ASM International 2002

Authors and Affiliations

  • T. Alp
    • 1
  • A. Wazzan
    • 1
  1. 1.Faculty of Engineering, Chemical & Materials Engineering DepartmentKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations