Journal of Phase Equilibria

, Volume 20, Issue 6, pp 593–611 | Cite as

Experimental determination and computation of the liquid miscibility gap in the system CaO-MgO-SiO2-TiO2

  • M. Kirschen
  • C. DeCapitani
Basic And Applied Research


Coexisting liquids in the CaO-MgO-SiO2-TiO2 system were synthesized and quenched at ambient pressure in air from 1600 °C using a Rh-Pt resistance furnace and from 1800 to 2000 °C using a laser heated air levitation setup. Compositions of quenched glasses determined by electron microprobe analysis are reproduced in detail by weighted extrapolations of binary Margules-type excess functions. Using a generalized Kohler method, the authors illustrate the correlation between the degree of binary excess polynomials and their extrapolation behavior to higher-order systems. The presented extrapolation approach avoids additional ternary parameters in the CaO-SiO2-TiO2 and MgO-SiO2-TiO2 systems and affords a reasonable extrapolation outside of the compositional region of stable liquid immiscibility. In contrast, ternary excess parameters had to be added to binary interaction terms in the CaO-MgO-TiO2 and CaO-MgO-SiO2 systems to reproduce the solvus and liquidus phase relations reported in the literature. The excess entropy terms of the liquid were minimized in order to avoid unjustified stable miscibility gaps of the melt up to at least 3000 °C. The reliability of the authors’ polynomial approximation for the excess Gibbs energy of the melt is reduced only when ternary interaction terms are added to binary terms in the melt. However, the proposed method permits a valuable approximation of the highly complex excess Gibbs energy at solvus compositions in the system CaO-MgO-SiO2-TiO2 with a minimum number of excess terms.


Rutile Excess Gibbs Energy Excess Function Excess Parameter Excess Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 27Gre:.
    J.W. Greig, Immiscibility in Silicate Melts, Am. J. Sci., Vol 13, 1927, p 1–44 & 133–154CrossRefGoogle Scholar
  2. 51Ols:.
    I.I. Olshansky, Equilibrium of Two Immiscible Liquids in the Silicate Systems of the Alkaline Earth Metals, Dokl. Akad. Nauk SSSR, Vol 76, 1951, p 93–96 (in Russian)Google Scholar
  3. 54Cou:.
    L.W. Coughanour, R.S. Roth, and V.A. DeProsses, Phase Equilibrium Relations in the Systems Lime-Titania and Zirconia-Titania, J. Res. Natl. Bur. Stand., Vol 52, 1954, p 37–42Google Scholar
  4. 54Dev1:.
    R.C. DeVries, R. Roy, and E.F. Osborn, The System TiO2-SiO2, Trans. Br. Ceram. Soc., Vol 53, 1954, p 525–540Google Scholar
  5. 54Dev2:.
    R.C. DeVries, R. Roy, and E.F. Osborn, Phase Equilibria in the System CaO-TiO2, J. Phys. Chem., Vol 58, 1954, p 1069–1073CrossRefGoogle Scholar
  6. 55Dev:.
    R.C. DeVries, R. Roy, and E.F. Osborn, Phase Equilibria in the System CaO-TiO2-SiO2, J. Am. Ceram. Soc., Vol 38, 1955, p 158–171CrossRefGoogle Scholar
  7. 57Mct:.
    G.D. McTaggart and A.I. Andrews, Immiscibility Area in the System TiO2-ZrO2-SiO2, J. Am. Ceram. Soc., Vol 40, 1957, p 167–170CrossRefGoogle Scholar
  8. 58Mas1:.
    F. Massazza and E. Sirchia, Il sistema MgO-SiO2-TiO2 nota I—revisione dei sistemi binari, Chim. l’Ind., Vol 40, 1958, p 376–380 (in Italian)Google Scholar
  9. 58Mas2:.
    F. Massazza and E. Sirchia, Il sistema MgO-SiO2-TiO2 nota II—gli equilibri allo stato solido e alla fusione, Chim. l’Ind., Vol 40, 1958, p 460–467 (in Italian)Google Scholar
  10. 58Rot:.
    R.S. Roth, Revision of the Phase Equilibrium Diagram of the Binary System Calcia-Titania, Showing the Compound Ca4Ti3O10, J. Res. Natl. Bur. Stand., Vol 61, 1958, p 437–440Google Scholar
  11. 60Koh:.
    F. Kohler, Zur Berechnung der thermodynamischen Daten eines ternaeren Systems aus den zugehoerigen binaeren Systemen, Monatsh. Chem., Vol 91, 1960, p 738–740 (in German)CrossRefGoogle Scholar
  12. 65Too:.
    G.W. Toop, Predicting Ternary Activities Using Binary Data, Trans. Metall. Soc. AIME, Vol 233, 1965, p 850–855Google Scholar
  13. 69Mcg:.
    I.D. McGregor, The System MgO-SiO2-TiO2 and Its Bearing on the Distribution of TiO2 in Basalts, Am. J. Sci., Vol 267A, 1969, p 342–363Google Scholar
  14. 69Rou:.
    M.A. Rouf, A.H. Cooper, and H.B. Bell A Study of Phase Equilibria in the System CaO-MgO-TiO2, Trans. Brit. Ceram. Soc., Vol 68, 1969, p 263–267Google Scholar
  15. 69Woe:.
    E. Woermann, B. Brezny, and A. Muan, Phase Equilibria in the System MgO-Iron Oxide-TiO2 in Air, Am. J. Sci., Vol 267A, 1969, p 463–479Google Scholar
  16. 70Jon:.
    A. Jongejan and A.L. Wilkins, A Re-examination of the System CaO-TiO2 at Liquidus Temperatures, J. Less-Common Met., Vol 20, 1970, p 273–279CrossRefGoogle Scholar
  17. 71Kim:.
    S. Kimura and A. Muan, Phase Relations in the System CaO-Iron Oxide-TiO2 in Air, Am. Min., Vol 56, 1971, p 1332–1346Google Scholar
  18. 73Rao:.
    M.V. Rao, R. Hiskes, and W.A. Tiller, Determination of Solute Interaction Parameters by Analysis of Phase Equilibria Using a Linear Programming Technique, Acta Metall., Vol 21, 1973, p 733–740CrossRefGoogle Scholar
  19. 73Shu:.
    R.L. Shultz, Effects of Titanium Oxide on Equilibria among Refractory Phases in the System CaO-MgO-Iron Oxide, J. Am. Ceram. Soc., Vol 56, 1973, p 33–36CrossRefGoogle Scholar
  20. 74Gal:.
    F.Y. Galakhov, M.P. Areshev, V.T. Vavilonova, and V.I. Aver’yanov, Determination of the Limits of Metastable Liquidation in the Silica-Rich Region of the System TiO2-SiO2, Bull. Acad. Sci. USSR: Inorganic Mater., Vol 10, 1974, p 153–154Google Scholar
  21. 75Mug:.
    Y.-M. Muggianu, M. Gambino, and J.P. Bros, Enthalpies de formation des alliages liquides bismuth-etain-gallium a 723K. Choix d’un representation analytique des grandeur d’exces integrales et partielles de melange, J. Chim. Phys. Biol., Vol 72, 1975, p 83–88 (in French)Google Scholar
  22. 76Tul:.
    H.E. Tulgar, Solid State Relationships in the System CaO-TiO2, Istanbul Tek. Univers. Bull., Vol 29, 1976, p 111–129Google Scholar
  23. 79Tew:.
    J.D. Tewhey and P.C. Hess, The Two Phase Region in the CaO-SiO2 System: Experimental Data and Thermodynamic Analysis, Phys. Chem. Glasses, Vol 20, 1979, p 41–53Google Scholar
  24. 80Hil:.
    M. Hillert, Empirical Methods of Predicting and Representing Thermodynamic Properties of Ternary Solution Phases, Calphad, Vol 4, 1980, p 1–12CrossRefGoogle Scholar
  25. 80Woo:.
    M.I. Wood and P.C. Hess, The Structural Role of Al2O3 and TiO2 in Immiscible Silicate Liquids in the System SiO2-MgO-CaO-FeO-TiO2-Al2O3, Contrib. Min. Petrol., Vol 72, 1980, p 319–328CrossRefADSGoogle Scholar
  26. 84Ber:.
    R.G. Berman and T.H. Brown, A Thermodynamic Model for Multicomponent Melts with Application to the System CaO-Al2O3-SiO2, Geochim. Cosmochim. Acta, Vol 48, 1984, p 661–678CrossRefADSGoogle Scholar
  27. 84Hoc:.
    M. Hoch and I. Arpshofen, Z. Metallkde., Vol 75, 1984, p 23–29Google Scholar
  28. 84Wec:.
    B. Wechsler and A. Navrotsky, Thermodynamics and Structural Chemistry of Compounds in the System MgO-TiO2, J. Solid State Chem., Vol 55, 1984, p 165–180CrossRefADSGoogle Scholar
  29. 85Ber:.
    R.G. Berman and T.H. Brown, Heat Capacities of Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2: Representation, Estimation, and High Temperature Extrapolation, Contrib. Min. Petrol., Vol 89, 1985, p 168–183CrossRefADSGoogle Scholar
  30. 85Cha:.
    M.W. Chase, C.A. Davies, J.R. Downey, D.J. Frurip, R.A. McDonald, and A.N. Syverud, JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data, Vol 14, 1985Google Scholar
  31. 85Sun:.
    B. Sundman, B. Jansson, and J.-O. Andersson, Calphad, Vol 9, 1985, p 153CrossRefGoogle Scholar
  32. 86Ber:.
    R. Berman and T.H. Brown, Erratum: Heat Capacities of Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2: Representation, Estimation, and High Temperature Extrapolation, Contrib. Min. Petrol., Vol 94, 1986, p 262CrossRefADSGoogle Scholar
  33. 86Hag1:.
    V.B.M. Hageman and H.A.J. Oonk, “Liquid Immiscibility in the SiO2 + MgO, SiO2 + SrO, SiO2 + La2O3, SiO2 + Y2O3 Systems,” Phys. Chem. Glasses, Vol 27, 1986, p 194–198Google Scholar
  34. 86Hag2:.
    V.B.M. Hageman, G.J.K. van den Berg, H.J. Jannsen, and H.A.J. Oonk, A Reinvestigation of Liquid Immiscibility in the SiO2-CaO System, Phys. Chem. Glasses, Vol 27, 1986, p 100–106Google Scholar
  35. 86Pel:.
    A.D. Pelton and M. Blander, Thermodynamic Analysis of Ordered Liquid Solutions by a Modified Quasichemical Approach—Application to Silicate Slags, Metall. Trans. B, Vol 17B, 1986, p 805–815CrossRefADSGoogle Scholar
  36. 87Bla:.
    M. Blander and A.D. Pelton, Thermodynamic Analysis of Binary Liquid Silicates and Prediction of Ternary Solution Properties by Modified Quasichemical Equations, Geochim. Cosmochim. Acta, Vol 51, 1987, p 85–95CrossRefADSGoogle Scholar
  37. 87Cho:.
    K.-C. Chou, A New Solution Model for Predicting Ternary Thermodynamic Properties, Calphad, Vol 11, 1987, p 293–300CrossRefGoogle Scholar
  38. 87Dec:.
    C. DeCapitani and T.H. Brown, The Computation of Chemical Equilibrium in Complex Systems Containing Non-Ideal Solutions, Geochim. Cosmochim. Acta, Vol 51, 1987, p 2639–2652CrossRefADSGoogle Scholar
  39. 88Ber:.
    R.G. Berman, Internally Consistent Thermodynamic Data for Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2, J. Petrol., Vol 29, 1988, p 445–522Google Scholar
  40. 88Hil:.
    M. Hillert and X. Wang, Modelling of Asymmetric Immiscibility Gaps, Calphad, Vol 12, 1988, p 255–256CrossRefGoogle Scholar
  41. 89Hel:.
    G. Helffrich and B. Wood, Subregular Model for Multicomponent Solutions, Am. Min., Vol 74, 1989, p 1016–1022Google Scholar
  42. 89Jac:.
    S.L. Jackson, Extension of Wohl’s Ternary Asymmetric Solution Model to Four and n Components, Am. Min., Vol 74, 1989, p 14–17Google Scholar
  43. 90Bas:.
    G.F. Bastin and H.J.M. Heijligers, Quantitative Electron Probe Microanalysis of Ultralight Elements (Boron-Oxygen), Scanning, Vol 12, 1990, p 225–236Google Scholar
  44. 90Dav:.
    R.H. Davies, A.T. Dinsdale, T.G. Chart, T.I. Barry, and M.H. Rand, Application of MTDATA to the Modelling of Multicomponent Equilibria, High Temp. Sci., Vol 26, 1990, p 251–262Google Scholar
  45. 90Eri:.
    G. Eriksson and K. Hack, ChemSage—A Computer Program for the Calculation of Complex Chemical Equilibria, Metall. Trans. B, Vol 21B, 1990, p 1013–1023CrossRefADSGoogle Scholar
  46. 90Tay:.
    J.R. Taylor and A.T. Dinsdale, Thermodynamic and Phase Diagram Data for the CaO-SiO2 System, Calphad, Vol 14, 1990, p 71–88CrossRefGoogle Scholar
  47. 91Sac:.
    R.O. Sack and M.S. Ghiorso, An Internally Consistent Model for the Thermodynamic Properties of Fe-Mg-Titanomagnetite-Aluminate Spinels, Contrib. Min. Petrol., Vol 106, 1991, p 474–505CrossRefADSGoogle Scholar
  48. 93Eri:.
    G. Eriksson and A.D. Pelton, Critical Evaluation and Optimization of the Thermodynamic Properties and Phase Diagrams of the CaO-Al2O3, Al2O3-SiO2 and CaO-Al2O3-SiO2 Systems, Metall. Trans. B, Vol 24, 1993, p 1839–1849Google Scholar
  49. 93Erk:.
    G. Eriksson and A.D. Pelton, Critical Evaluation and Optimization of the Thermodynamic Properties and Phase Diagrams of the MnO-TiO2, MgO-TiO2, FeO-TiO2, Ti2O3-TiO2, Na2O-TiO2, and K2O-TiO2 Systems, Metall. Trans. B, Vol 24, 1993, p 795–805CrossRefGoogle Scholar
  50. 93Wu:.
    P. Wu, G. Eriksson, A.D. Pelton, and M. Blander, Prediction of Thermodynamic Properties and Phase Diagrams of Silicate Systems—Evaluation of the FeO-MgO-SiO2 System, ISIJ Int., Vol 33, 1993, p 26–35CrossRefGoogle Scholar
  51. 94Che:.
    W. Cheng and J. Ganguly, Some Aspects of Multicomponent Excess Free Energy Models with Subregular Binaries, Geochim. Cosmochim. Acta, Vol 58, 1994, p 3763–3767CrossRefADSGoogle Scholar
  52. 94Eri:.
    G. Eriksson, P. Wu, M. Blander, and A.D. Pelton, Critical Evaluation and Optimization of the Thermodynamic Properties and Phase Diagram of the MnO-SiO2 and CaO-SiO2 Systems, Can. Metall. Q., Vol 33, 1994, p 13–21Google Scholar
  53. 94Hua:.
    W. Huang, M. Hillert, and X. Wang, Thermodynamic Assessment of the CaO-MgO-SiO2 System, Metall. Trans. A, Vol 26A, 1994, p 2293–2310Google Scholar
  54. 94Swa:.
    V. Swamy, S. Saxena, and B. Sundman, An Assessment of the One-Bar Liquidus Phase Relations in the MgO-SiO2 System, Calphad, Vol 18, 1994, p 157–164CrossRefGoogle Scholar
  55. 94Vil:.
    M.A. Villegas, A. dePablos, and J.M. Fernandez Navarro, Properties of CaO-TiO2-SiO2 Glasses, Glass Technol., Vol 35, 1994, p 276–280Google Scholar
  56. 95Cha:.
    S. Chakraborty, Diffusion in Silicate Melts, Rev. Min., Vol 32, 1995, p 411–503Google Scholar
  57. 95Ghi:.
    M.S. Ghiorso and R.O. Sack, Chemical Mass Transfer in Magmatic Processes IV: A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid-Solid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures, Contrib. Min. Petrol., Vol 119, 1995, p 197–212CrossRefADSGoogle Scholar
  58. 96Ban:.
    T. Ban, S. Hayashi, A. Yasumori, and K. Okada, Calculation of Metastable Immiscibility Region in the Al2O3-SiO2 System, J. Mater. Res., Vol 11, 1996, p 1421–1427CrossRefADSGoogle Scholar
  59. 96Ber:.
    R.G. Berman and L.Y. Aranovich, Optimized Standard State and Solution Properties of Minerals. I. Model Calibration for Olivine, Orthopyroxene, Cordierite, and Ilmenite in the System FeO-MgO-CaO-Al2O3-TiO2-SiO2, Contrib. Mineral. Petrol., Vol 126, 1996, p 1–24CrossRefADSGoogle Scholar
  60. 96Gok:.
    N.A. Gokcen, Gibbs-Duhem-Margules Laws, J. Phase Equilibria, Vol 17, 1996, p 50–51CrossRefGoogle Scholar
  61. 96Tom:.
    J. Tomiska and A. Neckel, The Margules Concept: The Basis of Modern Algebraic Representations of Thermodynamic Excess Properties, J. Phase Equilibria, Vol 17, 1996, p 11–20CrossRefGoogle Scholar
  62. 97Cho:.
    K.-C. Chou, A New Generation Solution Model for Predicting Ternary Thermodynamic Properties of a Multicomponent System from Binaries, Metall. Trans. B, Vol 28B, 1997, p 439–445Google Scholar
  63. 97Sel:.
    M. Selleby, An Assessment of the Ca-Fe-O-Si System, Metall. Trans. B, Vol 28B, 1997, p 577–596Google Scholar
  64. 97Zai:.
    A.I. Zaitsev, A.D. Litvina, N.P. Lyakishev, and B.M. Mogutnov, Thermodynamics of CaO-Al2O3-SiO2 and CaF2-CaO-Al2O3-SiO2 Melts, J. Chem. Soc.—Farad. Trans., Vol 93, 1997, p 3089–3098CrossRefGoogle Scholar
  65. 98Dec:.
    C. DeCapitani and M. Kirschen, A Generalized Multicomponent Excess Function with Application to Immiscible Liquids in the System CaO-SiO2-TiO2, Geochim. Cosmochim. Acta, Vol 62, 1998, p 3753–3763CrossRefADSGoogle Scholar
  66. 98Mur:.
    B.A. Murtagh and M.A. Saunders, “MINOS 5.5. User’s Guide,” Technical Report SOL 83-20R, revised, Stanford University, 1998Google Scholar
  67. 99Kir:.
    M. Kirschen, C. DeCapitani, F. Millot, J.-C. Rifflet, and J.-P. Coutures, Immiscible Silicate Liquids in the System SiO2-TiO2-Al2O3, Eur. J. Min., Vol 11, 1999, p 427–440Google Scholar

Copyright information

© ASM International 1999

Authors and Affiliations

  • M. Kirschen
    • 1
  • C. DeCapitani
    • 1
  1. 1.Mineralogisch-Petrographisches InstitutBaselSwitzerland

Personalised recommendations