Automating first-principles phase diagram calculations

  • A. van de Walle
  • G. Ceder
Basic And Applied Research


Devising a computational tool that assesses the thermodynamic stability of materials is among the most important steps required to build a “virtual laboratory,” where materials could be designed from first principles without relying on experimental input. Although the formalism that allows the calculation of solid-state phase diagrams from first principles is well established, its practical implementation remains a tedious process. The development of a fully automated algorithm to perform such calculations serves two purposes. First, it will make this powerful tool available to a large number of researchers. Second, it frees the calculation process from arbitrary parameters, guaranteeing that the results obtained are truly derived from the underlying first-principles calculations. The proposed algorithm formalizes the most difficult step of phase diagram calculations, namely the determination of the “cluster expanison,” which is a compact representation of the configurational dependence of the alloy’s energy. This is traditionally achieved by a fit of the unknown interaction parameters of the cluster expansion to a set of structural energies calculated from first principles. We present a formal statistical basis for the selection of both the interaction parameters to include in the cluster expansion and the structures to use to determine them. The proposed method relies on the concepts of cross-validation and variance minimization. An application to the calculation of the phase diagram of the Si-Ge, CaO-MgO, Ti-Al, and Cu-Au systems is presented.


  1. 1951Kik:.
    R. Kikuchi: Phys. Rev., 1951, 81, pp. 988–1003.MATHCrossRefMathSciNetADSGoogle Scholar
  2. 1959Phi:.
    J.C. Phillips and L. Kleinman: Phys. Rev., 1959, 116, pp. 287–94.MATHCrossRefADSGoogle Scholar
  3. 1974Sto:.
    M. Stone: J. R. Stat. Soc. B Met., 1974, 36, pp. 111–47.MATHGoogle Scholar
  4. 1983Con:.
    J.W. Connolly and A.R. Williams: Phys. Rev. B, 1983, 27, pp. 5169–172.CrossRefADSGoogle Scholar
  5. 1984San:.
    J.M. Sanchez, F. Ducastelle, and D. Gratias: Physica, 1984, 128A, pp. 334–50.MathSciNetADSGoogle Scholar
  6. 1987Li:.
    K.-C. Li: Ann. Stat., 1987, 15, pp. 958–75.MATHCrossRefGoogle Scholar
  7. 1988Bin:.
    K. Binder and D.W. Heermann: Monte Carlo Simulation in Statistical Physics. Springer-Verlag, New York, 1988.MATHGoogle Scholar
  8. 1988Mor:.
    V.L. Moruzzi, J.F. Janak, and K. Schwarz: Phys. Rev. B, 1988, 37, pp. 790–99.CrossRefADSGoogle Scholar
  9. 1988Qte:.
    A. Qteish and R. Resta: Phys. Rev. B, 1988, 37, pp. 6983–990.CrossRefADSGoogle Scholar
  10. 1990Ced:.
    G. Ceder, M. Asta, W.C. Carter, M. Sluiter, M.E. Mann, M. Kraitchman, and D. de Fontaine: Phys. Rev. B, 1990, 41, pp. 8698–9701.CrossRefADSGoogle Scholar
  11. 1990Van:.
    D. Vanderbilt: Phys. Rev. B, 1990, 41, pp. 7892–895.CrossRefADSGoogle Scholar
  12. 1991Gir:.
    S. de Gironcoli and P. Giannozzi: Phys. Rev. Lett., 1991, 66, pp. 2116–119.CrossRefADSGoogle Scholar
  13. 1991Duc:.
    F. Ducastelle: Order and Phase Stability in Alloys, Elsevier Science, New York, 1991.Google Scholar
  14. 1991Fer:.
    L.G. Ferreira, S.-H. Wei, and A. Zunger: Int. J. Supercomput., 1991, 5, pp. 34–55.CrossRefADSGoogle Scholar
  15. 1991Gol:.
    A.S. Goldberger: A Course in Econometrics, Harvard University Press, Cambridge, MA, 1991.Google Scholar
  16. 1992Lak:.
    D.B. Laks, L.G. Ferreira, S. Froyen, and A. Zunger: Phys. Rev. B, 1992, 46, pp. 12587–2605.CrossRefADSGoogle Scholar
  17. 1993Ast:.
    M. Asta, D. de Fontaine, and M. van Schilfgaarde: J. Mater. Res., 1993, 8, pp. 2554–568.CrossRefADSGoogle Scholar
  18. 1993Ced:.
    G. Ceder: Comp. Mater. Sci., 1993, 1, pp. 144–49.CrossRefGoogle Scholar
  19. 1994Ced:.
    G. Ceder, G.D. Garbulsky, D. Avis, and K. Fukuda: Phys. Rev. B, 1994, 49, pp. 1–7.CrossRefADSGoogle Scholar
  20. 1994Fon:.
    D. de Fontaine: Solid State Phys., 1994, 47, pp. 33–176.CrossRefGoogle Scholar
  21. 1994Gar:.
    G.D. Garbulsky and G. Ceder: Phys. Rev. B, 1994, 49, pp. 6327–330.CrossRefADSGoogle Scholar
  22. 1994Zun:.
    A. Zunger: First Principles Statistical Mechanics of Semiconductor Alloys and Intermetallic Compounds, in NATO ASI on Statics and Dynamics of Alloy Phase Transformation, Vol. 319, P.E. Turchi and A. Gonis, ed., Plenum Press, New York, 1994, pp. 361–93.Google Scholar
  23. 1995Gar:.
    G.D. Garbulksy and G. Ceder: Phys. Rev. B, 1995, 51, pp. 67–72.CrossRefADSGoogle Scholar
  24. 1995Wol:.
    C. Wolverton and A. Zunger: Phys. Rev. B, 1995, 52, pp. 8813–828.CrossRefADSGoogle Scholar
  25. 1996Gar:.
    G.D. Garbulsky and G. Ceder: Phys. Rev. B, 1996, 53, pp. 8993–9001.CrossRefADSGoogle Scholar
  26. 1996Kre1:.
    G. Kresse and J. Furthmüller: Comp. Mater. Sci., 1996, 6, pp. 15–50.CrossRefGoogle Scholar
  27. 1996Kre2:.
    G. Kresse and J. Furthmüller: Phys. Rev. B, 1996, 54, pp. 11169–1186.CrossRefADSGoogle Scholar
  28. 1996McC:.
    R. McCormack and D. de Fontaine: Phys. Rev. B, 1996, 54, pp. 9746–755.CrossRefADSGoogle Scholar
  29. 1996Tep:.
    P.D. Tepesch, A.F. Kohan, G.D. Garbulsky, and G. Ceder, C. Coley, H.T. Stokes, L.L. Boyer, M.J. Mehl, B.P. Burton, R.J. Cho, and J. Joannopoulos: J. Am. Ceram., 1996, 49, pp. 2033–40.CrossRefGoogle Scholar
  30. 1998Koh:.
    A.F. Kohan, P.D. Tepesch, G. Ceder, and C. Wolverton: Comp. Mater. Sci., 1998, 9, pp. 389–96.CrossRefGoogle Scholar
  31. 1998Ozo1:.
    V. Ozoliņš, C. Wolverton, and A. Zunger: Phys. Rev. B, 1998, 57, pp. 6427–443.CrossRefADSGoogle Scholar
  32. 1998Ozo2:.
    V. Ozoliņš, C. Wolverton, and A. Zunger: Phys. Rev. B, 1998, 58, pp. R5897-R5900.CrossRefADSGoogle Scholar
  33. 1998Ozo3:.
    V. Ozoliņš, C. Wolverton, and Alex Zunger: Phys. Rev. B, 1998, 57, pp. 4816–828.CrossRefADSGoogle Scholar
  34. 1998Ven:.
    A. van der Ven, M.K. Aydinol, G. Ceder, G. Kresse, and J. Hafner: Phys. Rev. B, 1998, 58, pp. 2975–987.CrossRefADSGoogle Scholar
  35. 1998Wal:.
    A. van de Walle, G. Ceder, and U.V. Waghmare: Phys. Rev. Lett., 1998, 80, pp. 4911–914.CrossRefADSGoogle Scholar
  36. 1998Wol:.
    C. Wolverton, V. Ozoliņš, and A. Zunger: Phys. Rev. B, 1998, 57, pp. 4332–348.CrossRefADSGoogle Scholar
  37. 2000Wal:.
    A. van de Walle and G. Ceder: Phys. Rev. B, 2000, 61, pp. 5972–978.CrossRefADSGoogle Scholar
  38. 2001Wal:.
    A. van de Walle: The MIT Ab initio Phase Stability (MAPS) Code, Scholar
  39. 2002Wal:.
    A. van de Walle and M. Asta: Model. Simul. Mater. Sci. 2002, 10, in press.Google Scholar

Copyright information

© ASM International 2002

Authors and Affiliations

  • A. van de Walle
    • 1
  • G. Ceder
    • 2
  1. 1.Department of Materials Science and EngineeringNorthwestern UniversityEvanston
  2. 2.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridge

Personalised recommendations