Skip to main content
Log in

A case for mantle plumes

  • Frontiers
  • Published:
Chinese Science Bulletin

Abstract

The existence of at least several plumes in the Earth’s mantle can be inferred with few assumptions from wellestablished observations. As well, thermal mantle plumes can be predicted from wellestablished and quantified fluid dynamics and a plausible assumption about the Earth’s early thermal state. Some additional important observations, especially of flood basalts and rift-related magmatism, have been shown to be plausibly consistent with the physical theory. Recent claims to have detected plumes using seismic tomography may comprise the most direct evidence for plumes, but plume tails are likely to be difficult to resolve definitively and the claims need to be well tested. Although significant questions remain about its viability, the plume hypothesis thus seems to be well worth continued investigation. Nevertheless there are many non-plate-related magmatic phenomena whose association with plumes is unclear or unlikely. Compositional buoyancy has recently been shown potentially to substantially complicate the dynamics of plumes, and this may lead to explanations for a wider range of phenomena, including “headless” hotspot tracks, than purely thermal plumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morgan, W. J., Convection plumes in the lower mantle, Nature, 1971, 230: 42–43.

    Article  Google Scholar 

  2. Morgan, W. J., Plate motions and deep mantle convection, Mem. Geol. Soc. Am., 1972, 132: 7–22.

    Google Scholar 

  3. Wilson, J. T., Evidence from islands on the spreading of the ocean floor, Nature, 1963, 197: 536–538.

    Article  Google Scholar 

  4. Wilson, J. T., A possible origin of the Hawaiian islands, Can. J. Phys., 1963, 41:863–870.

    Article  Google Scholar 

  5. Menard, H. W., The Ocean of Truth, Princeton, New Jersey: Chinese Science Bulletin Vol. 50 No. 15 August 2005 Princeton University Press, 1986, 353.

    Google Scholar 

  6. McDougall, I., Age of shield-building volcanism of Kauai and linear migration of volcanism in the Hawaiian Island chain, Earth Planet. Sci. Lett., 1979, 46: 31–42.

    Article  Google Scholar 

  7. Goldreich, P., Toomre, A., Some remarks on polar wandering, Jour. Geophys. Res., 1969, 74: 2555–2567.

    Article  Google Scholar 

  8. Cathles, L. M. I., The Viscosity of the Earth’s Mantle, Princeton: Princeton University Press, 1975, 390.

    Google Scholar 

  9. Watts, A. B., ten Brink, U. S., Crustal structure, flexure and subsidence history of the Hawaiian Islands, J. Geophys. Res., 1989, 94: 10473–410500.

    Article  Google Scholar 

  10. Turcotte, D. L., Schubert, G., Geodynamics: Applications of Continuum Physics to Geological Problems, New York: Wiley, 1982, 450.

    Google Scholar 

  11. Duncan, R. A., Keller, R. A., Radiometric ages for basement rocks from the Emperor Seamounts, ODP Leg 197, Geochem. Geophys. Geosyst, 2004, 5: Q08L03, doi:10.1029/2004GC000704.

    Article  Google Scholar 

  12. Courtillot, V., Davaille, A., Besse, J. et al., Three distinct types of hotspots in the Earth’s mantle, Earth Planet. Sci. Lett., 2003, 205: 295–308.

    Article  Google Scholar 

  13. Duncan, R. A., Richards, M. A., Hotspots, mantle plumes, flood basalts, and true polar wander, Rev. Geophys., 1991, 29: 31–50.

    Article  Google Scholar 

  14. Clouard, V., Bonneville, A., How many Pacific hotspots are fed by deep-mantle plumes, Geology, 2001, 29: 695–698.

    Article  Google Scholar 

  15. Davies, G. F., Dynamic Earth: Plates, Plumes and Mantle Convection, Cambridge: Cambridge University Press, 1999, 460.

    Book  Google Scholar 

  16. Batchelor, G. K., An Introduction to Fluid Dynamics, Cambridge: Cambridge University Press, 1967.

    Google Scholar 

  17. Davies, G F., Stirring geochemistry in mantle convection models with stiff plates and slabs, Geochim. Cosmochim. Acta, 2002, 66: 3125–3142.

    Article  Google Scholar 

  18. Loper, D. E., Mantle plumes, Tectonophys., 1991, 187: 373–384.

    Article  Google Scholar 

  19. Whitehead, J. A., Luther, D. S., Dynamics of laboratory diapir and plume models, Jour. Geophys. Res., 1975, 80: 705–717.

    Article  Google Scholar 

  20. Loper, D. E., Stacey, F. D., The dynamical and thermal structure of deep mantle plumes, Phys. Earth Planet. Interiors, 1983, 33: 304–317.

    Article  Google Scholar 

  21. Olson, P., Singer, H. A., Creeping plumes, Jour. Fluid Mech., 1985, 158: 511–531.

    Article  Google Scholar 

  22. Griffiths, R. W., Campbell, I. H., Stirring and structure in mantle plumes, Earth Planet. Sci. Lett., 1990, 99: 66–78.

    Article  Google Scholar 

  23. van Keken, P., Evolution of starting mantle plumes: a comparison between numerical and laboratory models, Earth Planet. Sci. Lett., 1997, 148: 1–11.

    Article  Google Scholar 

  24. Coulliette, D. L., Loper, D. E., Experimental, numerical and analytical models of mantle starting plumes, Phys. Earth Planet. Interiors, 1995, 92: 143–167.

    Article  Google Scholar 

  25. Foulger, G., Plumes, or plate tectonic processes? Astron. Geophys., 2002, 43:6. 19–23.

    Article  Google Scholar 

  26. Foulger, G. R., Natland, J. H., Is “hotspot” volcanism a consequence of plate tectonics? Science, 2003, 300: 921–922.

    Article  Google Scholar 

  27. Anderson, D. L., Look again, Astron. Geophys., 2003, 44: 1. 10–11.

    Article  Google Scholar 

  28. Anderson, D. L., The thermal state of the upper mantle; no role for mantle plumes, Geophys. Res. Lett., 2000, 27: 3623–3626.

    Article  Google Scholar 

  29. Anderson, D. L., Top-down tectonics, Science, 2001, 293: 2016–2018. Chinese Science Bulletin Vol. 50 No. 15 August 2005

    Article  Google Scholar 

  30. Leitch, A. M., Davies, G. F., Mantle plumes from flood basalts: Enhanced melting from plume ascent and an eclogite component, J. Geophys. Res., 2001, 106: 2047–2059.

    Article  Google Scholar 

  31. Steinberger, B., Motion of the Easter hot spot relative to the Hawaii and Louisville hot spots, Geochem. Geophys. Geosyst., 2002, 3: doi: 10.1029/2002GC000334.

  32. Steinberger, B., O’Connell, R. J., Advection of plumes in mantle flow: implications for hotspot motion, mantle viscosity and plume distribution, Geophys. J. Int., 1998, 132: 412–434.

    Article  Google Scholar 

  33. Zhong, S., Zuber, M. T., Moresi, L. N. et al., Role of temperature dependent viscosity and surface plates in spherical shell models of mantle convection, J. Geophys. Res., 2000, 105: 11063–11082.

    Article  Google Scholar 

  34. Kerr, R. C., Mériaux, C., Structure and dynamics of sheared mantle plumes Geochem. Geophys. Geosyst., 2004.

  35. Farnetani, C. G., Excess temperature of mantle plumes: the role of chemical stratification across D”, Geophys. Res. Lett., 1997, 24: 1583–1586.

    Article  Google Scholar 

  36. Farnetani, C., Legras, B., Tackley, P. J., Mixing and deformations in mantle plumes, Earth Planet. Sci. Lett., 2002, 196: 1 -15.

    Article  Google Scholar 

  37. Leitch, A. M., Davies, G. F., Wells, M., A plume head melting under a rifting margin, Earth Planet. Sci. Lett., 1998, 161: 161–177.

    Article  Google Scholar 

  38. Anderson, D. L., Simple scaling relations in geodynamics: the role of pressure in mantle convection and plume formation, Chinese Science Bulletin, 2004, 49: 2017–2021.

    Google Scholar 

  39. Hager, B. H., Subducted slabs and the geoid: constraints on mantle rheology and flow, Jour. Geophys. Res., 1984, 89: 6003–6015.

    Article  Google Scholar 

  40. Mitrovica, J. X., Haskell [1935] revisited, J. Geophys. Res., 1996, 101: 555–569.

    Article  Google Scholar 

  41. Mitrovica, J. X., Forte, A. M., Radial profile of mantle viscosity: results from the joint inversion of convection and postglacial rebound observables, J. Geophys. Res., 1997, 102: 2751–2769.

    Article  Google Scholar 

  42. Davies, G. F., Geophysical and isotopic constraints on mantle convection: an interim synthesis, Jour. Geophys. Res., 1984, 89: 6017–6040.

    Article  Google Scholar 

  43. Whitehead, J. A., Instabilities of fluid conduits in a flowing earth — are plates lubricated by the asthenosphere, Geophys. Jour. Roy. Astr. Soc, 1982, 70:415–433.

    Article  Google Scholar 

  44. O’Neill, C., Muller, D., Steinberger, B., Geodynamic implications of moving Indian Ocean hotspots, Earth Planet. Sci. Lett., 2003, 215: 151–168.

    Article  Google Scholar 

  45. Malamud, B. D., Turcotte, D. L., How many plumes are there? Earth Planet. Sci. Lett., 1999, 174: 113–124.

    Article  Google Scholar 

  46. Zhong, S., Dynamics of thermal plumes in 3D isoviscous thermal convection, Geophys. J. Int., 2005, in press.

  47. Davies, G. F., Ocean bathymetry and mantle convection, 1. Large-scale flow and hotspots, Jour. Geophys. Res., 1988, 93: 10467–10480.

    Article  Google Scholar 

  48. Sleep, N. H., Hotspots and mantle plumes: Some phenomenology, J. Geophys. Res., 1990, 95: 6715–6736.

    Article  Google Scholar 

  49. Hill, R. I., Campbell, I. H., Davies, G. F., Griffiths, R. W., Mantle plumes and continental tectonics, Science, 1992, 256: 186–193.

    Article  Google Scholar 

  50. Labrosse, S., Hotspots, mantle plumes and core heat loss, Earth Planet. Sci. Lett, 2002, 199: 147–156.

    Article  Google Scholar 

  51. Farnetani, C. G., Samuel, H., Beyond the thermal plume paradigm, Geophys. Res. Lett., 2005, 32: L07311, doi:07310.01029/ 02005GL022360.

    Article  Google Scholar 

  52. Stacey, F. D., Physics of the Earth, Brisbane: Brookfield Press, 1553 1992, 513.

    Google Scholar 

  53. Braginsky, S. I., Roberts, P. H., Equations governing convection in Earth’s core and the geodynamo, Geophys. Astrophys. Fluid Dyn., 1995, 79: 1–97.

    Article  Google Scholar 

  54. Buffett, B. A., Estimates of heat flow in the deep mantle based on the power requirements for the geodynamo, Geophys. Res. Lett., 2002, 29: 1566.

    Article  Google Scholar 

  55. Nimmo, F., Price, G. D., Brodholt, J. et al., The influence of potassium on core and geodynamo evolution, Geophys. J. Int., 2004, 156: 363–376.

    Article  Google Scholar 

  56. Manga, M., Weeraratne, D., Morris, S. J. S., Boundary layer thickness and instabilities in Benard convection of a liquid with temperature-dependent viscosity, Phys. Fluids, 2001, 13: 802–805.

    Article  Google Scholar 

  57. Davies, G. F., Cooling the core and mantle by plume and plate flows, Geophys. J. Int., 1993, 115: 132–146.

    Article  Google Scholar 

  58. Wüllner, U., Davies, G. F., Numerical evaluation of mantle plume spacing, size, flow rates and unsteadiness, J. Geophys. Res., 1999, 104: 7377–7387.

    Article  Google Scholar 

  59. Tarduno, J. A., Duncan, R. A., Scholl, D. W. et al., The Emporer Seamounts: southward motion of the Hawaiian hotspot plume in Earth’s mantle, Science, 2003, 301: 1064–1069.

    Article  Google Scholar 

  60. Tarduno, J. A., Gee, J., Large-scale motion between Pacific and Atlantic hotspots, Nature, 1995, 378: 477–480.

    Article  Google Scholar 

  61. Gordon, R. G., Horner-Johnson, B. C. et al., Latitudinal shift of the Hawaiian hotspot: Motion relative to other hotspots or motion of all hotspots in unison relative to the spin axis (i.e. true polar wander)? Geophys. Res. Abstracts, 2005, 7: 10233. SRef-ID: 1607–7962/gra/EGU05-A-10233.

    Google Scholar 

  62. Nataf, H.-C, Seismic imaging of mantle plumes, Annu. Rev. Earth Planet. Sci., 2000, 28: 391–417.

    Article  Google Scholar 

  63. Davies, G. F., Temporal variation of the Hawaiian plume flux, Earth Planet. Sci. Lett., 1992, 113: 277–286.

    Article  Google Scholar 

  64. Ji, Y., Nataf, H.-C, Detection of mantle plumes in the lower mantle by diffraction tomography: theory, Earth Planet. Sci. Lett., 1998, 159: 87–98.

    Article  Google Scholar 

  65. Ritsema, J., Allen, R. M., The elusive mantle plume, Earth Planet. Sci. Lett., 2003, 207: 1–12.

    Article  Google Scholar 

  66. Montelli, R., Nolet, G., Dahlen, F. A. et al., Finite-frequency tomography reveals a variety of plumes in the mantle, Science, 2004, 303: 338–343.

    Article  Google Scholar 

  67. Farley, K. A., Neroda, E., Noble gases in the earth’s mantle, Annu. Rev. Earth. Planet. Sci., 1998, 26: 189–218.

    Article  Google Scholar 

  68. Montelli, R., Nolet, G., Dahlen, F A., Deep plumes in the mantle: geometry and dynamics, Geophys. Res. Abstracts, 2005, 7: 02473. SRef-ID: 1607–7962/gra/EGU05-A-02473.

    Google Scholar 

  69. Natland, J. H., Winterer, E. L., Fissure control on volcanic action in the Pacific, inPlumes, Plates and Paradigms (eds., Foulger, G. R., Natland, J., Presnall, D. et al.), Geological Society of America, 2005.

  70. Davies, G. F., Thermomechanical erosion of the lithosphere by mantle plumes, J. Geophys. Res., 1994, 99: 15709–715722.

    Article  Google Scholar 

  71. Davies, G. F., Mantle plumes, mantle stirring and hotspot chemistry, Earth Planet Sci. Lett., 1990, 99: 94–109.

    Article  Google Scholar 

  72. Yaxley, G. M., Green, D. H., Reactions between ecogite and peridotite: mantle refertilisation by subduction of oceanic crust, Schweiz. Mineral. Petrog. Mitt., 1998, 78: 243–255.

    Google Scholar 

  73. Spiegelman, M., Kelemen, P. B., Aharonov, E., Causes and consequences of flow organization during melt transport: The reaction infiltration instability in compactible media, J. Geophys. Res., 2001, 106: 2061–2078.

    Article  Google Scholar 

  74. Takahashi, E., Nakajima, K., Wright, T. L., Origin of the Columbia River basalts: Melting model of a heterogeneous plume head, Earth Planet. Sci. Lett, 1998, 162: 63–80.

    Article  Google Scholar 

  75. Putirka, K. D., Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes, Geochem. Geophys. Geosyst., 2005, 6: Q05L08, doi:10.1029/ 2005GC000915.

    Article  Google Scholar 

  76. Coffin, M. F., Eidholm, O., Large igneous provinces: crustal structure, dimensions and external consequences, Rev. Geophys., 1994, 32: 1–36.

    Article  Google Scholar 

  77. Mutter, J. C., Zehnder, C. M., Deep crustal structure and magmatic processes: the inception of seafloor spreading in the Norwegian-Greenland Sea, in Early Tertiary Volcanism and the Opening of the NE Atlantic (eds., Morton, A.C., Parsons, L.M.), Geol. Soc. Amer. Spec. Publ. 39, 1988, 35–48.

    Google Scholar 

  78. Morgan, W. J., Hotspot tracks and the opening of the Atlantic and Indian Oceans, in The Sea 7(ed. Emiliani, C.), New York: Wiley, 1981, 443–487.

    Google Scholar 

  79. Campbell, I. H., Griffiths, R. W., Implications of mantle plume structure for the evolution of flood basalts, Earth Planet. Sci. Lett., 1990, 99: 79–83.

    Article  Google Scholar 

  80. White, R., McKenzie, D., Magmatism at rift zones: the generation of volcanic continental margins and flood basalts, Jour. Geophys. Res., 1989, 94: 7685–7730.

    Article  Google Scholar 

  81. Hooper, P. R., The timing of crustal extension and the eruption of continental flood basalts, Nature, 1990, 345: 246–249.

    Article  Google Scholar 

  82. Courtillot, V., Besse, J., Vandamme, D. et al., Deccan flood basalts at the Cretaceous/Tertiary boundary? Earth Planet. Sci. Lett, 1986, 80:361–374.

    Article  Google Scholar 

  83. Hofmann, A. W., Mantle chemistry: the message from oceanic volcanism, Nature, 1997, 385: 219–229.

    Article  Google Scholar 

  84. Forte, A. M., Mitrovica, J. X., New inferences of mantle viscosityfrom joint inversion of long-wavelength mantle convection and post-glacial rebound data, Geophys. Res. Lett., 1996, 23: 1147–1150.

    Article  Google Scholar 

  85. Davies, G. F., Movies of plates and plumes, 2002, http://rses.anu. edu.au/gfd/members/davies/index.html.

  86. Kelemen, P. B., Holbrook, W. S., Origin of thick, high-velocity igneous crust along the U.S. East Coast Margin, J. Geophys. Res., 1995, 100: 10077–10094.

    Article  Google Scholar 

  87. Hill, R. I., Starting plumes and continental breakup, Earth Planet. Sci. Lett, 1991, 104: 398–416.

    Article  Google Scholar 

  88. Langmuir, C. H., Klein, E. M., Plank, T., Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges, Mantle Flow and Melt Generation at Mid-Ocean Ridges, Geophysical Monograph 71, Washington, D.C.: American Geophyical Union, 1992.

    Google Scholar 

  89. Kelemen, P. B., Hirth, G., Shimizu, N. et al., A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges, Philos. Trans. R. Soc. London, Ser. A, 1997, 355: 1–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey F. Davies.

About this article

Cite this article

Davies, G.F. A case for mantle plumes. Chin.Sci.Bull. 50, 1541–1554 (2005). https://doi.org/10.1360/982005-918

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1360/982005-918

Keywords

Navigation