Skip to main content
Log in

Ras protein participated in histone acetylation-mediated cell cycle control in Physarum polycephalum

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

In this paper, we demonstrate that in Physarum polycephalum, a naturally synchronized slime mold, histone deacetylase (HDAC) inhibitor Trichostatin A (TSA), arrestes the cell cycle at the checkpoints of S/G2, G2/M and mitosis exit, and influences the transcription of two ras genes Ppras1 and Pprap1, as well as the Ras protein level. Antibody neutralization experiment using anti-Ras antibody treatment showed that Ras protein played an important role in cell cycle checkpoint control through regulation of the level of Cyclin B1, suggesting that Ras protein might be a key factor for histone acetylation-mediated cell cycle regulation in P. polycephalum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spencer, V. A., Davie, J. R., Role of covalent modification of histones in regulating gene expression, Gene, 1999, 240: 1–12.

    Article  Google Scholar 

  2. Grunstein, M., Histone acetylation in chromatin structure and transcription, Nature, 1997, 389: 349–352.

    Article  Google Scholar 

  3. Puri, P. L., Avantaggiati, M. L., Balsano, C. et al., p300 is required for MyoD-dependent cell cycle arrest and muscle-specific gene transcription, EMBO J., 1997, 16: 369–383.

    Article  Google Scholar 

  4. Puri, P. L., Sartorelli, V., Yang, X. et al., Differential roles of p300 and PCAF acetyltransferases in muscle differentiation, Mol. Cell, 1997, 1: 35–45.

    Article  Google Scholar 

  5. Suzuki-Yagawa, Y., Guemah, M., Roeder, R. G., The ts13 mutation in the TAFII 250 subunit (CCG1) of TFIID directly affects transcription of D-type cyclin genes in cells arrested in G1 at the nonpermissive temperature, Mol. Cell Biol., 1997, 90: 607–614.

    Google Scholar 

  6. Bartl, S., Taplick, J., Laggerm, G. et al., Identification of mouse histone deacetylase 1 as a growth factor-inducible gene, Mol. Cell Biol., 1997, 17: 5033–5043.

    Google Scholar 

  7. Sambucetti, L. C., Fischer, D. D., Zabludoff, S. et al., Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects, J. Biol. Chem., 1999, 274: 34940–34947.

    Article  Google Scholar 

  8. Sandor, Y., Senderowicz, A., Sackett, D. et al., P21-dependent G1 arrest with downregulation of cyclin D1 and upregulation of cyclin E by the histone deacetylase inhibitbor FR901228, British J. Cancer, 2000, 83:817–825.

    Article  Google Scholar 

  9. Siavoshian, S., Blottiere, H. M., Cherbut, C. et al., Butyrate stimulates cyclin D and p21 and inhibits cyclin-dependent kinase 2 expression in HT-29 colonic epithelial cells, Biochem. Biophys. Res. Commun., 1997, 232: 169–172.

    Article  Google Scholar 

  10. Loidl, A., Loidl, P., Oncogene- and tumor-suppressor gene-related proteins in plants and fungi, Crit. Rev. Oncog., 1996, 7: 49–64.

    Google Scholar 

  11. Brandtner, E. M., Lechner, T., Loidl, P. et al., Molecular identification of PpHDAC1, the first histone deacetylase from the slide mold Physarum polycephalum, Cell Biol. Int., 2002, 26(9): 783–789.

    Article  Google Scholar 

  12. Golderer, G., Loidl, P., Grobner, P., Histone acetyltransferase activity during the cell cycle, FEBS Lett., 1987, 222(2): 322–326.

    Article  Google Scholar 

  13. Lopez-Rodas, G., Brosch, G., Golderer, G. et al., Enzymes involved in the dynamic equilibrium of core histone acetylation of Physarum polycephalum, FEBS Lett., 1992, 296(1): 82–86.

    Article  Google Scholar 

  14. Lusser, A., Brosch, G., Lopez-Rodas, G. et al., Histone acetyltransferases during the cell cycle and differentiation of Physarum polycephalum, Eur. J. Cell Biol., 1997, 74: 102–110.

    Google Scholar 

  15. Winston, J. T., Coats, S. R., Wang, Y. Z. et al., Regulation of the cell cycle machinery by oncogenic ras, Oncogene, 1996, 12: 127–130.

    Google Scholar 

  16. Daniel, J. W., Baldwin, H. H., Methods of culture of plasmodial myxomycetes, in Methods in Cell Physiol (ed. Prescott, D. M.), New York: Academic Press, 1964, 61–110.

    Google Scholar 

  17. Guiying, L., Miao, X., Xiaoxue, L., Variation of Cyclin B1-like protein during the cell cycle of Physarum polycephalum L., Acta Botanica Sinica, 2003, 45: 445–451.

    Google Scholar 

  18. Yoshida, M., Kijima, M., Akita, M. et al., Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A, J. Biol. Chem., 1990, 265: 17174–17179.

    Google Scholar 

  19. Marks, P. A., Richon, V. M., Rifkind, R. A., Histone deacetylase inhibitors: Inducers of differentiation or apoptosis of transformed cells, J. Natl. Cancer Inst., 2000, 92: 1210–1216.

    Article  Google Scholar 

  20. Van Lint, C., Emiliani, S., Verdin, E., The expression of a small fraction of cellular gene is changed in response to histone hyperacetylation, Gene Expr., 1996, 5: 245–253.

    Google Scholar 

  21. Fronk, J., Expression of ras-family genes in the cell cycle and during differentiation of the lower eukaryote Physarum polycephalum, Acta. Biochem. Pol., 1999, 46: 197–202.

    Google Scholar 

  22. Noda, M., Structures and functions of the K rev-1 transformation suppressor gene and its relatives, Biochim. Biophys. Acta, 1993, 1155:97–109.

    Google Scholar 

  23. Nassar, N., Horn, G., Herrmann, C. et al., The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1 A and a GTP analogue, Nature, 1995, 375: 554–560.

    Article  Google Scholar 

  24. Miller, M. E., Cross, F. R., Cyclin specificity: How many wheels do you need on a unicycle? J. Cell Sci., 2001, 114: 1811–1820.

    Google Scholar 

  25. Zhong, S., Goto, H., Inagaki, M. et al., Phosphorylation at serine 28 and acetylation at lysine 9 of histone H3 induced by trichostatin A, Oncogene, 2003, 22: 5291–5297.

    Article  Google Scholar 

  26. Avruch, J. A., Raf meets Ras: Completing the framework of signal transduction pathway, TIBS, 1994, 19: 279–283.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiqu Huang.

About this article

Cite this article

Li, X., Lu, J., Zhao, Y. et al. Ras protein participated in histone acetylation-mediated cell cycle control in Physarum polycephalum . Chin.Sci.Bull. 50, 1721–1725 (2005). https://doi.org/10.1360/982005-307

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1360/982005-307

Keywords

Navigation